Properties

Label 2-43706-1.1-c1-0-24
Degree $2$
Conductor $43706$
Sign $-1$
Analytic cond. $348.994$
Root an. cond. $18.6813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3·3-s + 4-s − 5-s + 3·6-s − 7-s + 8-s + 6·9-s − 10-s + 2·11-s + 3·12-s + 13-s − 14-s − 3·15-s + 16-s + 3·17-s + 6·18-s − 6·19-s − 20-s − 3·21-s + 2·22-s − 4·23-s + 3·24-s − 4·25-s + 26-s + 9·27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.73·3-s + 1/2·4-s − 0.447·5-s + 1.22·6-s − 0.377·7-s + 0.353·8-s + 2·9-s − 0.316·10-s + 0.603·11-s + 0.866·12-s + 0.277·13-s − 0.267·14-s − 0.774·15-s + 1/4·16-s + 0.727·17-s + 1.41·18-s − 1.37·19-s − 0.223·20-s − 0.654·21-s + 0.426·22-s − 0.834·23-s + 0.612·24-s − 4/5·25-s + 0.196·26-s + 1.73·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43706\)    =    \(2 \cdot 13 \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(348.994\)
Root analytic conductor: \(18.6813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 43706,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
13 \( 1 - T \)
41 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 13 T + p T^{2} \) 1.47.n
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.93120652266592, −14.35856885746393, −14.02577208176228, −13.41967723693243, −13.07938065522112, −12.47625937424472, −12.07285011428199, −11.38911416898799, −10.79015201336829, −10.07156335665007, −9.583871947498465, −9.246075062420785, −8.268604461440865, −8.133339724394346, −7.714855293343772, −6.801169838783432, −6.458685594886003, −5.831142508526029, −4.800125626635407, −4.211625428362740, −3.862647425232963, −3.156690987086880, −2.870590532604897, −1.803519050562718, −1.565864601763068, 0, 1.565864601763068, 1.803519050562718, 2.870590532604897, 3.156690987086880, 3.862647425232963, 4.211625428362740, 4.800125626635407, 5.831142508526029, 6.458685594886003, 6.801169838783432, 7.714855293343772, 8.133339724394346, 8.268604461440865, 9.246075062420785, 9.583871947498465, 10.07156335665007, 10.79015201336829, 11.38911416898799, 12.07285011428199, 12.47625937424472, 13.07938065522112, 13.41967723693243, 14.02577208176228, 14.35856885746393, 14.93120652266592

Graph of the $Z$-function along the critical line