Base field \(\Q(\sqrt{41}) \)
Generator \(w\), with minimal polynomial \(x^{2} - x - 10\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[676, 26, 26]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $15$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w - 4]$ | $\phantom{-}1$ |
2 | $[2, 2, -w - 3]$ | $\phantom{-}1$ |
5 | $[5, 5, -2w - 5]$ | $-1$ |
5 | $[5, 5, -2w + 7]$ | $-1$ |
9 | $[9, 3, 3]$ | $\phantom{-}3$ |
23 | $[23, 23, 2w - 9]$ | $-4$ |
23 | $[23, 23, -2w - 7]$ | $-4$ |
31 | $[31, 31, -6w - 17]$ | $\phantom{-}4$ |
31 | $[31, 31, 6w - 23]$ | $\phantom{-}4$ |
37 | $[37, 37, 2w - 3]$ | $\phantom{-}3$ |
37 | $[37, 37, -2w - 1]$ | $\phantom{-}3$ |
41 | $[41, 41, 2w - 1]$ | $\phantom{-}0$ |
43 | $[43, 43, -4w - 9]$ | $-5$ |
43 | $[43, 43, 4w - 13]$ | $-5$ |
49 | $[49, 7, -7]$ | $-13$ |
59 | $[59, 59, 2w - 11]$ | $-10$ |
59 | $[59, 59, -2w - 9]$ | $-10$ |
61 | $[61, 61, -4w + 17]$ | $-8$ |
61 | $[61, 61, 4w + 13]$ | $-8$ |
73 | $[73, 73, 8w + 23]$ | $-10$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, w - 4]$ | $-1$ |
$2$ | $[2, 2, -w - 3]$ | $-1$ |
$169$ | $[169, 13, -13]$ | $-1$ |