Properties

Label 2.2.41.1-676.1-h
Base field \(\Q(\sqrt{41}) \)
Weight $[2, 2]$
Level norm $676$
Level $[676, 26, 26]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{41}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 10\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[676, 26, 26]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $15$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 4]$ $\phantom{-}1$
2 $[2, 2, -w - 3]$ $\phantom{-}1$
5 $[5, 5, -2w - 5]$ $-1$
5 $[5, 5, -2w + 7]$ $-1$
9 $[9, 3, 3]$ $\phantom{-}3$
23 $[23, 23, 2w - 9]$ $-4$
23 $[23, 23, -2w - 7]$ $-4$
31 $[31, 31, -6w - 17]$ $\phantom{-}4$
31 $[31, 31, 6w - 23]$ $\phantom{-}4$
37 $[37, 37, 2w - 3]$ $\phantom{-}3$
37 $[37, 37, -2w - 1]$ $\phantom{-}3$
41 $[41, 41, 2w - 1]$ $\phantom{-}0$
43 $[43, 43, -4w - 9]$ $-5$
43 $[43, 43, 4w - 13]$ $-5$
49 $[49, 7, -7]$ $-13$
59 $[59, 59, 2w - 11]$ $-10$
59 $[59, 59, -2w - 9]$ $-10$
61 $[61, 61, -4w + 17]$ $-8$
61 $[61, 61, 4w + 13]$ $-8$
73 $[73, 73, 8w + 23]$ $-10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w - 4]$ $-1$
$2$ $[2, 2, -w - 3]$ $-1$
$169$ $[169, 13, -13]$ $-1$