Properties

Label 2-40656-1.1-c1-0-50
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 7-s + 9-s + 4·13-s + 2·15-s + 4·17-s + 21-s − 4·23-s − 25-s + 27-s + 8·31-s + 2·35-s + 6·37-s + 4·39-s − 12·41-s − 8·43-s + 2·45-s − 8·47-s + 49-s + 4·51-s + 6·53-s − 4·59-s + 12·61-s + 63-s + 8·65-s − 8·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 0.377·7-s + 1/3·9-s + 1.10·13-s + 0.516·15-s + 0.970·17-s + 0.218·21-s − 0.834·23-s − 1/5·25-s + 0.192·27-s + 1.43·31-s + 0.338·35-s + 0.986·37-s + 0.640·39-s − 1.87·41-s − 1.21·43-s + 0.298·45-s − 1.16·47-s + 1/7·49-s + 0.560·51-s + 0.824·53-s − 0.520·59-s + 1.53·61-s + 0.125·63-s + 0.992·65-s − 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.646426408\)
\(L(\frac12)\) \(\approx\) \(4.646426408\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61932558995776, −14.16312839281405, −13.77597433947825, −13.28923905186634, −12.97187997810142, −12.03979226856815, −11.74147826264766, −11.12315462189600, −10.32587143201686, −9.942887403428159, −9.692496612220164, −8.826232290560643, −8.270164147227912, −8.095356957989199, −7.285698718700645, −6.445329986093547, −6.222739822016729, −5.432089314031874, −4.943170305360723, −4.117718962164052, −3.506949265595598, −2.922808956413121, −2.029670168206110, −1.595941803711284, −0.7787596649608472, 0.7787596649608472, 1.595941803711284, 2.029670168206110, 2.922808956413121, 3.506949265595598, 4.117718962164052, 4.943170305360723, 5.432089314031874, 6.222739822016729, 6.445329986093547, 7.285698718700645, 8.095356957989199, 8.270164147227912, 8.826232290560643, 9.692496612220164, 9.942887403428159, 10.32587143201686, 11.12315462189600, 11.74147826264766, 12.03979226856815, 12.97187997810142, 13.28923905186634, 13.77597433947825, 14.16312839281405, 14.61932558995776

Graph of the $Z$-function along the critical line