Properties

Label 2-394944-1.1-c1-0-64
Degree $2$
Conductor $394944$
Sign $-1$
Analytic cond. $3153.64$
Root an. cond. $56.1573$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s − 4·7-s + 9-s − 2·13-s − 2·15-s − 17-s + 4·19-s − 4·21-s − 4·23-s − 25-s + 27-s − 6·29-s − 4·31-s + 8·35-s − 2·37-s − 2·39-s − 10·41-s + 4·43-s − 2·45-s − 8·47-s + 9·49-s − 51-s − 6·53-s + 4·57-s + 4·59-s − 6·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.554·13-s − 0.516·15-s − 0.242·17-s + 0.917·19-s − 0.872·21-s − 0.834·23-s − 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.718·31-s + 1.35·35-s − 0.328·37-s − 0.320·39-s − 1.56·41-s + 0.609·43-s − 0.298·45-s − 1.16·47-s + 9/7·49-s − 0.140·51-s − 0.824·53-s + 0.529·57-s + 0.520·59-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 394944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 394944 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(394944\)    =    \(2^{6} \cdot 3 \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(3153.64\)
Root analytic conductor: \(56.1573\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 394944,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62305633682296, −12.26941167581946, −11.78413921389836, −11.49789034328657, −10.83661695433780, −10.25360255213651, −9.911973263140994, −9.534220658128367, −9.061458673733449, −8.692795313180805, −8.016434300504580, −7.599773337181440, −7.281540705507690, −6.838089048273408, −6.240671268435029, −5.806769185772610, −5.213243681132860, −4.588183433779361, −4.020803606361778, −3.629282181426829, −3.102181801798650, −2.915316326084700, −1.953116814601460, −1.583425720220975, −0.4473612773819170, 0, 0.4473612773819170, 1.583425720220975, 1.953116814601460, 2.915316326084700, 3.102181801798650, 3.629282181426829, 4.020803606361778, 4.588183433779361, 5.213243681132860, 5.806769185772610, 6.240671268435029, 6.838089048273408, 7.281540705507690, 7.599773337181440, 8.016434300504580, 8.692795313180805, 9.061458673733449, 9.534220658128367, 9.911973263140994, 10.25360255213651, 10.83661695433780, 11.49789034328657, 11.78413921389836, 12.26941167581946, 12.62305633682296

Graph of the $Z$-function along the critical line