Properties

Label 2-381480-1.1-c1-0-10
Degree $2$
Conductor $381480$
Sign $1$
Analytic cond. $3046.13$
Root an. cond. $55.1917$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s − 11-s − 2·13-s + 15-s + 4·19-s + 8·23-s + 25-s − 27-s − 6·29-s + 33-s + 10·37-s + 2·39-s + 6·41-s − 4·43-s − 45-s − 7·49-s + 6·53-s + 55-s − 4·57-s + 4·59-s − 14·61-s + 2·65-s + 4·67-s − 8·69-s − 10·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s − 0.301·11-s − 0.554·13-s + 0.258·15-s + 0.917·19-s + 1.66·23-s + 1/5·25-s − 0.192·27-s − 1.11·29-s + 0.174·33-s + 1.64·37-s + 0.320·39-s + 0.937·41-s − 0.609·43-s − 0.149·45-s − 49-s + 0.824·53-s + 0.134·55-s − 0.529·57-s + 0.520·59-s − 1.79·61-s + 0.248·65-s + 0.488·67-s − 0.963·69-s − 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 381480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 381480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(381480\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(3046.13\)
Root analytic conductor: \(55.1917\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 381480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.466879369\)
\(L(\frac12)\) \(\approx\) \(1.466879369\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.52358195744618, −11.82683230228553, −11.65075552516784, −11.12633276366945, −10.81340548644958, −10.29820482108668, −9.719627430411540, −9.324155949838761, −9.010682951340260, −8.289671345508096, −7.729205197710159, −7.443344457581140, −7.081132471513745, −6.432614284372514, −5.988678579444048, −5.399487133071936, −4.993054447687773, −4.618280612475052, −3.998093652908522, −3.428323121691605, −2.870328559439989, −2.423062105743761, −1.553617398756344, −0.9994456171340769, −0.3765272166989982, 0.3765272166989982, 0.9994456171340769, 1.553617398756344, 2.423062105743761, 2.870328559439989, 3.428323121691605, 3.998093652908522, 4.618280612475052, 4.993054447687773, 5.399487133071936, 5.988678579444048, 6.432614284372514, 7.081132471513745, 7.443344457581140, 7.729205197710159, 8.289671345508096, 9.010682951340260, 9.324155949838761, 9.719627430411540, 10.29820482108668, 10.81340548644958, 11.12633276366945, 11.65075552516784, 11.82683230228553, 12.52358195744618

Graph of the $Z$-function along the critical line