Properties

Label 2-37440-1.1-c1-0-82
Degree $2$
Conductor $37440$
Sign $-1$
Analytic cond. $298.959$
Root an. cond. $17.2904$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s + 2·11-s + 13-s − 2·17-s + 6·19-s + 6·23-s + 25-s + 2·29-s − 10·31-s + 4·35-s + 2·37-s + 6·41-s − 10·43-s − 4·47-s + 9·49-s + 2·53-s − 2·55-s + 6·59-s − 2·61-s − 65-s + 4·67-s − 6·71-s − 6·73-s − 8·77-s − 12·79-s − 16·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s + 0.603·11-s + 0.277·13-s − 0.485·17-s + 1.37·19-s + 1.25·23-s + 1/5·25-s + 0.371·29-s − 1.79·31-s + 0.676·35-s + 0.328·37-s + 0.937·41-s − 1.52·43-s − 0.583·47-s + 9/7·49-s + 0.274·53-s − 0.269·55-s + 0.781·59-s − 0.256·61-s − 0.124·65-s + 0.488·67-s − 0.712·71-s − 0.702·73-s − 0.911·77-s − 1.35·79-s − 1.75·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37440\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(298.959\)
Root analytic conductor: \(17.2904\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 37440,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.19430159118139, −14.60679385796855, −14.13494608249605, −13.36558057967056, −13.02960788704147, −12.67954253008076, −11.92733766946608, −11.48783878091835, −11.01124076989610, −10.32848694263724, −9.664176735578647, −9.370602756792461, −8.810921489834340, −8.252796609363211, −7.278462669097675, −7.069893842534175, −6.549961696214957, −5.781591363579978, −5.342918030684769, −4.431241502873795, −3.861174095272976, −3.110358156213174, −2.969996078618612, −1.731617487289648, −0.8902393932025061, 0, 0.8902393932025061, 1.731617487289648, 2.969996078618612, 3.110358156213174, 3.861174095272976, 4.431241502873795, 5.342918030684769, 5.781591363579978, 6.549961696214957, 7.069893842534175, 7.278462669097675, 8.252796609363211, 8.810921489834340, 9.370602756792461, 9.664176735578647, 10.32848694263724, 11.01124076989610, 11.48783878091835, 11.92733766946608, 12.67954253008076, 13.02960788704147, 13.36558057967056, 14.13494608249605, 14.60679385796855, 15.19430159118139

Graph of the $Z$-function along the critical line