Properties

Label 2-364815-1.1-c1-0-13
Degree $2$
Conductor $364815$
Sign $-1$
Analytic cond. $2913.06$
Root an. cond. $53.9727$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s + 2·7-s + 3·8-s − 10-s − 6·13-s − 2·14-s − 16-s − 6·17-s + 4·19-s − 20-s − 4·23-s + 25-s + 6·26-s − 2·28-s − 2·31-s − 5·32-s + 6·34-s + 2·35-s − 2·37-s − 4·38-s + 3·40-s + 6·41-s − 6·43-s + 4·46-s − 4·47-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s + 0.755·7-s + 1.06·8-s − 0.316·10-s − 1.66·13-s − 0.534·14-s − 1/4·16-s − 1.45·17-s + 0.917·19-s − 0.223·20-s − 0.834·23-s + 1/5·25-s + 1.17·26-s − 0.377·28-s − 0.359·31-s − 0.883·32-s + 1.02·34-s + 0.338·35-s − 0.328·37-s − 0.648·38-s + 0.474·40-s + 0.937·41-s − 0.914·43-s + 0.589·46-s − 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 364815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 364815 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(364815\)    =    \(3^{2} \cdot 5 \cdot 11^{2} \cdot 67\)
Sign: $-1$
Analytic conductor: \(2913.06\)
Root analytic conductor: \(53.9727\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 364815,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
67 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 12 T + p T^{2} \) 1.61.am
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.84544833027172, −12.27596007022086, −11.67443425741417, −11.38812478292578, −10.87303210311678, −10.24749729431820, −10.01374040319076, −9.509382634855525, −9.238579996866767, −8.550908991693915, −8.362612760201660, −7.687694072185600, −7.369736360341860, −6.917377536193607, −6.368480592059009, −5.536809485304468, −5.265466662750501, −4.757420232445747, −4.343788018937577, −3.882599633811028, −2.987994715938696, −2.439949168796841, −1.854251674788537, −1.498531693893711, −0.5884192301013120, 0, 0.5884192301013120, 1.498531693893711, 1.854251674788537, 2.439949168796841, 2.987994715938696, 3.882599633811028, 4.343788018937577, 4.757420232445747, 5.265466662750501, 5.536809485304468, 6.368480592059009, 6.917377536193607, 7.369736360341860, 7.687694072185600, 8.362612760201660, 8.550908991693915, 9.238579996866767, 9.509382634855525, 10.01374040319076, 10.24749729431820, 10.87303210311678, 11.38812478292578, 11.67443425741417, 12.27596007022086, 12.84544833027172

Graph of the $Z$-function along the critical line