Properties

Label 2-34496-1.1-c1-0-87
Degree $2$
Conductor $34496$
Sign $-1$
Analytic cond. $275.451$
Root an. cond. $16.5967$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 9-s + 11-s + 4·15-s − 4·17-s + 4·19-s − 4·23-s − 25-s − 4·27-s − 2·29-s + 2·31-s + 2·33-s + 6·37-s − 4·41-s + 4·43-s + 2·45-s − 2·47-s − 8·51-s − 2·53-s + 2·55-s + 8·57-s − 6·59-s + 4·61-s − 8·69-s − 12·71-s − 16·73-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s + 1/3·9-s + 0.301·11-s + 1.03·15-s − 0.970·17-s + 0.917·19-s − 0.834·23-s − 1/5·25-s − 0.769·27-s − 0.371·29-s + 0.359·31-s + 0.348·33-s + 0.986·37-s − 0.624·41-s + 0.609·43-s + 0.298·45-s − 0.291·47-s − 1.12·51-s − 0.274·53-s + 0.269·55-s + 1.05·57-s − 0.781·59-s + 0.512·61-s − 0.963·69-s − 1.42·71-s − 1.87·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34496\)    =    \(2^{6} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(275.451\)
Root analytic conductor: \(16.5967\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 34496,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.21980573945876, −14.47115356156796, −14.16529745964268, −13.79071006985428, −13.15995099181747, −12.98937187728033, −12.03146242795867, −11.52768953385912, −11.05648229321733, −10.06625120910057, −9.907982346009284, −9.306525113343176, −8.771239327398753, −8.418684874375544, −7.556175271743257, −7.315476020298016, −6.309484234805174, −5.982052408409717, −5.311278663358708, −4.426632462459894, −3.955234034854684, −3.081085719512506, −2.636895041046299, −1.917015266413491, −1.364023431659138, 0, 1.364023431659138, 1.917015266413491, 2.636895041046299, 3.081085719512506, 3.955234034854684, 4.426632462459894, 5.311278663358708, 5.982052408409717, 6.309484234805174, 7.315476020298016, 7.556175271743257, 8.418684874375544, 8.771239327398753, 9.306525113343176, 9.907982346009284, 10.06625120910057, 11.05648229321733, 11.52768953385912, 12.03146242795867, 12.98937187728033, 13.15995099181747, 13.79071006985428, 14.16529745964268, 14.47115356156796, 15.21980573945876

Graph of the $Z$-function along the critical line