Properties

Label 2-338688-1.1-c1-0-33
Degree $2$
Conductor $338688$
Sign $1$
Analytic cond. $2704.43$
Root an. cond. $52.0042$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 3·11-s + 6·13-s − 6·17-s − 2·19-s + 6·23-s + 4·25-s − 6·29-s + 3·31-s − 6·37-s + 6·41-s + 8·43-s − 12·47-s + 3·53-s + 9·55-s − 12·59-s + 18·65-s + 4·67-s − 6·71-s + 11·73-s + 12·79-s + 9·83-s − 18·85-s − 6·95-s + 17·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.904·11-s + 1.66·13-s − 1.45·17-s − 0.458·19-s + 1.25·23-s + 4/5·25-s − 1.11·29-s + 0.538·31-s − 0.986·37-s + 0.937·41-s + 1.21·43-s − 1.75·47-s + 0.412·53-s + 1.21·55-s − 1.56·59-s + 2.23·65-s + 0.488·67-s − 0.712·71-s + 1.28·73-s + 1.35·79-s + 0.987·83-s − 1.95·85-s − 0.615·95-s + 1.72·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338688\)    =    \(2^{8} \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(2704.43\)
Root analytic conductor: \(52.0042\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338688,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.817291712\)
\(L(\frac12)\) \(\approx\) \(4.817291712\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.80509800592263, −12.14510154292148, −11.55962120012014, −11.02523257194245, −10.84660387534991, −10.48233281576389, −9.645110951103692, −9.333898002442400, −8.995125845803355, −8.682465816091703, −8.095250029272744, −7.429631125843434, −6.762102338000807, −6.449909150897370, −6.162169656781504, −5.680494765881758, −5.045801925918348, −4.566429257895416, −3.963357423734775, −3.482599519247177, −2.896119127004252, −2.085627708712761, −1.844666926217134, −1.204070302844792, −0.5860734217286722, 0.5860734217286722, 1.204070302844792, 1.844666926217134, 2.085627708712761, 2.896119127004252, 3.482599519247177, 3.963357423734775, 4.566429257895416, 5.045801925918348, 5.680494765881758, 6.162169656781504, 6.449909150897370, 6.762102338000807, 7.429631125843434, 8.095250029272744, 8.682465816091703, 8.995125845803355, 9.333898002442400, 9.645110951103692, 10.48233281576389, 10.84660387534991, 11.02523257194245, 11.55962120012014, 12.14510154292148, 12.80509800592263

Graph of the $Z$-function along the critical line