Invariants
Base field: | $\F_{97}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 17 x + 97 x^{2}$ |
Frobenius angles: | $\pm0.168554845458$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-11}) \) |
Galois group: | $C_2$ |
Jacobians: | $3$ |
Isomorphism classes: | 3 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $81$ | $9315$ | $912708$ | $88539075$ | $8587503441$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $81$ | $9315$ | $912708$ | $88539075$ | $8587503441$ | $832973829120$ | $80798299660593$ | $7837433675532675$ | $760231058561511876$ | $73742412680038815075$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which 0 are hyperelliptic):
- $y^2=x^3+50 x+56$
- $y^2=x^3+5 x+25$
- $y^2=x^3+49 x+51$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.97.r | $2$ | (not in LMFDB) |