Properties

Label 2-552e2-1.1-c1-0-132
Degree $2$
Conductor $304704$
Sign $1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s − 4·11-s + 2·13-s − 2·17-s − 25-s − 2·29-s + 8·35-s − 10·37-s + 6·41-s − 8·43-s − 8·47-s + 9·49-s + 6·53-s + 8·55-s + 4·59-s + 14·61-s − 4·65-s − 8·67-s − 8·71-s − 6·73-s + 16·77-s + 12·79-s − 12·83-s + 4·85-s − 2·89-s − 8·91-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s − 1.20·11-s + 0.554·13-s − 0.485·17-s − 1/5·25-s − 0.371·29-s + 1.35·35-s − 1.64·37-s + 0.937·41-s − 1.21·43-s − 1.16·47-s + 9/7·49-s + 0.824·53-s + 1.07·55-s + 0.520·59-s + 1.79·61-s − 0.496·65-s − 0.977·67-s − 0.949·71-s − 0.702·73-s + 1.82·77-s + 1.35·79-s − 1.31·83-s + 0.433·85-s − 0.211·89-s − 0.838·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22915988909760, −12.66118221301471, −12.33191469391462, −11.72060175972178, −11.33347096178323, −10.89447841149990, −10.23215213392039, −10.05180452940339, −9.583925974408825, −8.776125098545530, −8.622287031449482, −8.108514794993621, −7.344933680448641, −7.254353345518781, −6.604353173170779, −6.132774695302897, −5.619188428760750, −5.117435534540341, −4.483527660398645, −3.913593674131372, −3.386812457323128, −3.170756191750209, −2.421469703213503, −1.875471695964714, −0.8964397036053468, 0, 0, 0.8964397036053468, 1.875471695964714, 2.421469703213503, 3.170756191750209, 3.386812457323128, 3.913593674131372, 4.483527660398645, 5.117435534540341, 5.619188428760750, 6.132774695302897, 6.604353173170779, 7.254353345518781, 7.344933680448641, 8.108514794993621, 8.622287031449482, 8.776125098545530, 9.583925974408825, 10.05180452940339, 10.23215213392039, 10.89447841149990, 11.33347096178323, 11.72060175972178, 12.33191469391462, 12.66118221301471, 13.22915988909760

Graph of the $Z$-function along the critical line