Properties

Label 2-290445-1.1-c1-0-0
Degree $2$
Conductor $290445$
Sign $1$
Analytic cond. $2319.21$
Root an. cond. $48.1582$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s − 5-s + 6-s − 3·8-s + 9-s − 10-s − 12-s + 4·13-s − 15-s − 16-s + 18-s + 4·19-s + 20-s − 8·23-s − 3·24-s + 25-s + 4·26-s + 27-s + 2·29-s − 30-s − 2·31-s + 5·32-s − 36-s − 6·37-s + 4·38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.447·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s + 1.10·13-s − 0.258·15-s − 1/4·16-s + 0.235·18-s + 0.917·19-s + 0.223·20-s − 1.66·23-s − 0.612·24-s + 1/5·25-s + 0.784·26-s + 0.192·27-s + 0.371·29-s − 0.182·30-s − 0.359·31-s + 0.883·32-s − 1/6·36-s − 0.986·37-s + 0.648·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 290445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(290445\)    =    \(3 \cdot 5 \cdot 17^{2} \cdot 67\)
Sign: $1$
Analytic conductor: \(2319.21\)
Root analytic conductor: \(48.1582\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 290445,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.401777676\)
\(L(\frac12)\) \(\approx\) \(1.401777676\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 + T \)
17 \( 1 \)
67 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 14 T + p T^{2} \) 1.61.o
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.68651297808055, −12.34434214487520, −11.93857726289620, −11.53524278649439, −10.94118253500520, −10.30578315632434, −10.04485387042069, −9.368959160759836, −8.925966255836814, −8.641133614408281, −8.069232669107068, −7.687323207568282, −7.175361619486620, −6.389767744926413, −6.135473629712899, −5.503452685862690, −5.069109566048698, −4.424501992631076, −3.916728514937491, −3.726560353581363, −2.998823656590948, −2.741908519870123, −1.652500254761419, −1.327707918092562, −0.2697018334615790, 0.2697018334615790, 1.327707918092562, 1.652500254761419, 2.741908519870123, 2.998823656590948, 3.726560353581363, 3.916728514937491, 4.424501992631076, 5.069109566048698, 5.503452685862690, 6.135473629712899, 6.389767744926413, 7.175361619486620, 7.687323207568282, 8.069232669107068, 8.641133614408281, 8.925966255836814, 9.368959160759836, 10.04485387042069, 10.30578315632434, 10.94118253500520, 11.53524278649439, 11.93857726289620, 12.34434214487520, 12.68651297808055

Graph of the $Z$-function along the critical line