Properties

Label 2-28665-1.1-c1-0-27
Degree $2$
Conductor $28665$
Sign $1$
Analytic cond. $228.891$
Root an. cond. $15.1291$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s + 3·8-s − 10-s + 6·11-s + 13-s − 16-s + 4·17-s + 4·19-s − 20-s − 6·22-s + 25-s − 26-s − 4·29-s − 5·32-s − 4·34-s + 8·37-s − 4·38-s + 3·40-s + 6·41-s + 2·43-s − 6·44-s − 2·47-s − 50-s − 52-s + 6·53-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s + 1.06·8-s − 0.316·10-s + 1.80·11-s + 0.277·13-s − 1/4·16-s + 0.970·17-s + 0.917·19-s − 0.223·20-s − 1.27·22-s + 1/5·25-s − 0.196·26-s − 0.742·29-s − 0.883·32-s − 0.685·34-s + 1.31·37-s − 0.648·38-s + 0.474·40-s + 0.937·41-s + 0.304·43-s − 0.904·44-s − 0.291·47-s − 0.141·50-s − 0.138·52-s + 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28665\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(228.891\)
Root analytic conductor: \(15.1291\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 28665,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.171207067\)
\(L(\frac12)\) \(\approx\) \(2.171207067\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.94592610730018, −14.62780648944623, −14.15986403185442, −13.70090784778651, −13.08855102591104, −12.61508619308808, −11.74369892498967, −11.56781784128011, −10.77346171416092, −10.10492365208316, −9.693748658878026, −9.168469597856171, −8.908565040777614, −8.143864522857227, −7.486697168100683, −7.108811610500319, −6.170415723704214, −5.803162805653339, −5.037010325249706, −4.262418168267092, −3.798677961456105, −3.064816844950615, −1.964036434796249, −1.214088471362279, −0.7816968203664426, 0.7816968203664426, 1.214088471362279, 1.964036434796249, 3.064816844950615, 3.798677961456105, 4.262418168267092, 5.037010325249706, 5.803162805653339, 6.170415723704214, 7.108811610500319, 7.486697168100683, 8.143864522857227, 8.908565040777614, 9.168469597856171, 9.693748658878026, 10.10492365208316, 10.77346171416092, 11.56781784128011, 11.74369892498967, 12.61508619308808, 13.08855102591104, 13.70090784778651, 14.15986403185442, 14.62780648944623, 14.94592610730018

Graph of the $Z$-function along the critical line