Properties

Label 2-27735-1.1-c1-0-2
Degree $2$
Conductor $27735$
Sign $1$
Analytic cond. $221.465$
Root an. cond. $14.8817$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s − 5-s + 6-s − 4·7-s − 3·8-s + 9-s − 10-s + 4·11-s − 12-s + 2·13-s − 4·14-s − 15-s − 16-s + 8·17-s + 18-s + 2·19-s + 20-s − 4·21-s + 4·22-s + 6·23-s − 3·24-s + 25-s + 2·26-s + 27-s + 4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.447·5-s + 0.408·6-s − 1.51·7-s − 1.06·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s − 0.288·12-s + 0.554·13-s − 1.06·14-s − 0.258·15-s − 1/4·16-s + 1.94·17-s + 0.235·18-s + 0.458·19-s + 0.223·20-s − 0.872·21-s + 0.852·22-s + 1.25·23-s − 0.612·24-s + 1/5·25-s + 0.392·26-s + 0.192·27-s + 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27735\)    =    \(3 \cdot 5 \cdot 43^{2}\)
Sign: $1$
Analytic conductor: \(221.465\)
Root analytic conductor: \(14.8817\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27735,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.848404695\)
\(L(\frac12)\) \(\approx\) \(2.848404695\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 + T \)
43 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.92842868694124, −14.69543037448213, −14.19656787967448, −13.69052256086864, −12.95833976364494, −12.72559543515226, −12.37475672585210, −11.56420520520680, −11.14191589337559, −10.12619967813802, −9.676211066944594, −9.179808863692639, −8.950284699008321, −8.069376213381579, −7.447298067729118, −6.808903499743419, −6.276144040000661, −5.532813367881774, −5.147886890574634, −3.904727023890703, −3.783465943899059, −3.328860991007097, −2.721984753621472, −1.379297225473892, −0.6188018255256282, 0.6188018255256282, 1.379297225473892, 2.721984753621472, 3.328860991007097, 3.783465943899059, 3.904727023890703, 5.147886890574634, 5.532813367881774, 6.276144040000661, 6.808903499743419, 7.447298067729118, 8.069376213381579, 8.950284699008321, 9.179808863692639, 9.676211066944594, 10.12619967813802, 11.14191589337559, 11.56420520520680, 12.37475672585210, 12.72559543515226, 12.95833976364494, 13.69052256086864, 14.19656787967448, 14.69543037448213, 14.92842868694124

Graph of the $Z$-function along the critical line