Properties

Label 2-520e2-1.1-c1-0-221
Degree $2$
Conductor $270400$
Sign $-1$
Analytic cond. $2159.15$
Root an. cond. $46.4667$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s − 3·9-s + 3·11-s + 4·17-s − 7·19-s + 4·23-s + 8·29-s − 10·31-s + 3·37-s − 2·41-s + 6·43-s + 47-s + 2·49-s − 9·53-s + 4·59-s + 14·61-s − 9·63-s + 4·67-s + 6·71-s − 4·73-s + 9·77-s + 10·79-s + 9·81-s + 89-s − 16·97-s − 9·99-s + 101-s + ⋯
L(s)  = 1  + 1.13·7-s − 9-s + 0.904·11-s + 0.970·17-s − 1.60·19-s + 0.834·23-s + 1.48·29-s − 1.79·31-s + 0.493·37-s − 0.312·41-s + 0.914·43-s + 0.145·47-s + 2/7·49-s − 1.23·53-s + 0.520·59-s + 1.79·61-s − 1.13·63-s + 0.488·67-s + 0.712·71-s − 0.468·73-s + 1.02·77-s + 1.12·79-s + 81-s + 0.105·89-s − 1.62·97-s − 0.904·99-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270400\)    =    \(2^{6} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2159.15\)
Root analytic conductor: \(46.4667\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 270400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85987661451197, −12.51893943250784, −12.10719008274149, −11.47074997766669, −11.25296889434284, −10.81195520059663, −10.41717793034796, −9.706800261734376, −9.204273980656413, −8.802119727995659, −8.308807090010223, −8.048017490482245, −7.476533313704421, −6.758440601372121, −6.489878364160932, −5.853529108327988, −5.294481357756986, −5.001497814717708, −4.298813572052686, −3.854168752150533, −3.300827677841953, −2.551998486790861, −2.147443644165216, −1.379240546084428, −0.9169053771850081, 0, 0.9169053771850081, 1.379240546084428, 2.147443644165216, 2.551998486790861, 3.300827677841953, 3.854168752150533, 4.298813572052686, 5.001497814717708, 5.294481357756986, 5.853529108327988, 6.489878364160932, 6.758440601372121, 7.476533313704421, 8.048017490482245, 8.308807090010223, 8.802119727995659, 9.204273980656413, 9.706800261734376, 10.41717793034796, 10.81195520059663, 11.25296889434284, 11.47074997766669, 12.10719008274149, 12.51893943250784, 12.85987661451197

Graph of the $Z$-function along the critical line