| L(s)  = 1 | + 2-s   − 3-s   + 4-s   − 5-s   − 6-s   − 7-s   + 8-s   + 9-s   − 10-s     − 12-s   + 6·13-s   − 14-s   + 15-s   + 16-s   − 6·17-s   + 18-s     − 20-s   + 21-s     − 4·23-s   − 24-s   + 25-s   + 6·26-s   − 27-s   − 28-s   − 2·29-s   + 30-s     + 32-s  + ⋯ | 
| L(s)  = 1 | + 0.707·2-s   − 0.577·3-s   + 1/2·4-s   − 0.447·5-s   − 0.408·6-s   − 0.377·7-s   + 0.353·8-s   + 1/3·9-s   − 0.316·10-s     − 0.288·12-s   + 1.66·13-s   − 0.267·14-s   + 0.258·15-s   + 1/4·16-s   − 1.45·17-s   + 0.235·18-s     − 0.223·20-s   + 0.218·21-s     − 0.834·23-s   − 0.204·24-s   + 1/5·25-s   + 1.17·26-s   − 0.192·27-s   − 0.188·28-s   − 0.371·29-s   + 0.182·30-s     + 0.176·32-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 - T \) |  | 
|  | 3 | \( 1 + T \) |  | 
|  | 5 | \( 1 + T \) |  | 
|  | 7 | \( 1 + T \) |  | 
|  | 11 | \( 1 \) |  | 
| good | 13 | \( 1 - 6 T + p T^{2} \) | 1.13.ag | 
|  | 17 | \( 1 + 6 T + p T^{2} \) | 1.17.g | 
|  | 19 | \( 1 + p T^{2} \) | 1.19.a | 
|  | 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e | 
|  | 29 | \( 1 + 2 T + p T^{2} \) | 1.29.c | 
|  | 31 | \( 1 + p T^{2} \) | 1.31.a | 
|  | 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c | 
|  | 41 | \( 1 - 2 T + p T^{2} \) | 1.41.ac | 
|  | 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai | 
|  | 47 | \( 1 - 12 T + p T^{2} \) | 1.47.am | 
|  | 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g | 
|  | 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae | 
|  | 61 | \( 1 + 2 T + p T^{2} \) | 1.61.c | 
|  | 67 | \( 1 + 12 T + p T^{2} \) | 1.67.m | 
|  | 71 | \( 1 + 4 T + p T^{2} \) | 1.71.e | 
|  | 73 | \( 1 - 6 T + p T^{2} \) | 1.73.ag | 
|  | 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i | 
|  | 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m | 
|  | 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g | 
|  | 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−15.65453482807119, −15.34189190048782, −14.48236705504149, −13.83836920455973, −13.50525240653707, −12.88627008601765, −12.48510895613173, −11.84005039389615, −11.28276186408103, −10.89741772701392, −10.49607596244877, −9.672103426161278, −8.884625221143263, −8.547768641446548, −7.660589302819731, −7.120776090715242, −6.482287632969336, −5.943277450427470, −5.618636020098210, −4.536953053888091, −4.179361287684056, −3.640773004794497, −2.806316947982522, −1.959244751831460, −1.067508753955517, 0, 
1.067508753955517, 1.959244751831460, 2.806316947982522, 3.640773004794497, 4.179361287684056, 4.536953053888091, 5.618636020098210, 5.943277450427470, 6.482287632969336, 7.120776090715242, 7.660589302819731, 8.547768641446548, 8.884625221143263, 9.672103426161278, 10.49607596244877, 10.89741772701392, 11.28276186408103, 11.84005039389615, 12.48510895613173, 12.88627008601765, 13.50525240653707, 13.83836920455973, 14.48236705504149, 15.34189190048782, 15.65453482807119
