Properties

Label 2-25410-1.1-c1-0-49
Degree $2$
Conductor $25410$
Sign $-1$
Analytic cond. $202.899$
Root an. cond. $14.2442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s − 7-s + 8-s + 9-s − 10-s − 12-s + 6·13-s − 14-s + 15-s + 16-s − 6·17-s + 18-s − 20-s + 21-s − 4·23-s − 24-s + 25-s + 6·26-s − 27-s − 28-s − 2·29-s + 30-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s + 1.66·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s − 0.223·20-s + 0.218·21-s − 0.834·23-s − 0.204·24-s + 1/5·25-s + 1.17·26-s − 0.192·27-s − 0.188·28-s − 0.371·29-s + 0.182·30-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(202.899\)
Root analytic conductor: \(14.2442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25410,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.65453482807119, −15.34189190048782, −14.48236705504149, −13.83836920455973, −13.50525240653707, −12.88627008601765, −12.48510895613173, −11.84005039389615, −11.28276186408103, −10.89741772701392, −10.49607596244877, −9.672103426161278, −8.884625221143263, −8.547768641446548, −7.660589302819731, −7.120776090715242, −6.482287632969336, −5.943277450427470, −5.618636020098210, −4.536953053888091, −4.179361287684056, −3.640773004794497, −2.806316947982522, −1.959244751831460, −1.067508753955517, 0, 1.067508753955517, 1.959244751831460, 2.806316947982522, 3.640773004794497, 4.179361287684056, 4.536953053888091, 5.618636020098210, 5.943277450427470, 6.482287632969336, 7.120776090715242, 7.660589302819731, 8.547768641446548, 8.884625221143263, 9.672103426161278, 10.49607596244877, 10.89741772701392, 11.28276186408103, 11.84005039389615, 12.48510895613173, 12.88627008601765, 13.50525240653707, 13.83836920455973, 14.48236705504149, 15.34189190048782, 15.65453482807119

Graph of the $Z$-function along the critical line