Properties

Label 2-244800-1.1-c1-0-127
Degree $2$
Conductor $244800$
Sign $1$
Analytic cond. $1954.73$
Root an. cond. $44.2124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 3·11-s − 13-s − 17-s + 19-s + 9·23-s + 6·29-s + 2·31-s − 4·37-s + 3·41-s − 7·43-s − 6·47-s + 9·49-s + 6·53-s + 6·59-s − 8·61-s − 4·67-s − 12·71-s − 2·73-s − 12·77-s − 10·79-s + 6·83-s − 4·91-s + 16·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.904·11-s − 0.277·13-s − 0.242·17-s + 0.229·19-s + 1.87·23-s + 1.11·29-s + 0.359·31-s − 0.657·37-s + 0.468·41-s − 1.06·43-s − 0.875·47-s + 9/7·49-s + 0.824·53-s + 0.781·59-s − 1.02·61-s − 0.488·67-s − 1.42·71-s − 0.234·73-s − 1.36·77-s − 1.12·79-s + 0.658·83-s − 0.419·91-s + 1.62·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244800\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1954.73\)
Root analytic conductor: \(44.2124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.852067771\)
\(L(\frac12)\) \(\approx\) \(2.852067771\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00917385798317, −12.32252610613688, −11.77280676028541, −11.63394911296592, −10.93231643768286, −10.60893445998968, −10.28926936318179, −9.613647556649323, −9.046080151003131, −8.496532781902026, −8.318060338882991, −7.667177276159279, −7.286033623441125, −6.823723684869667, −6.201068937954375, −5.464286471462628, −5.092009105759736, −4.762813886645748, −4.330085697350718, −3.506477650343970, −2.799965917426702, −2.558678308645722, −1.639835403588358, −1.286686715144517, −0.4698551091836772, 0.4698551091836772, 1.286686715144517, 1.639835403588358, 2.558678308645722, 2.799965917426702, 3.506477650343970, 4.330085697350718, 4.762813886645748, 5.092009105759736, 5.464286471462628, 6.201068937954375, 6.823723684869667, 7.286033623441125, 7.667177276159279, 8.318060338882991, 8.496532781902026, 9.046080151003131, 9.613647556649323, 10.28926936318179, 10.60893445998968, 10.93231643768286, 11.63394911296592, 11.77280676028541, 12.32252610613688, 13.00917385798317

Graph of the $Z$-function along the critical line