Properties

Label 244800.ro
Number of curves $2$
Conductor $244800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ro1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 244800.ro have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244800.ro do not have complex multiplication.

Modular form 244800.2.a.ro

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{7} - 3 q^{11} - q^{13} - q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 244800.ro

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244800.ro1 244800ro2 \([0, 0, 0, -53400, 4752250]\) \(-23100424192/14739\) \(-10744731000000\) \([]\) \(746496\) \(1.4414\)  
244800.ro2 244800ro1 \([0, 0, 0, 600, 27250]\) \(32768/459\) \(-334611000000\) \([]\) \(248832\) \(0.89207\) \(\Gamma_0(N)\)-optimal