Properties

Label 2-235950-1.1-c1-0-12
Degree $2$
Conductor $235950$
Sign $1$
Analytic cond. $1884.07$
Root an. cond. $43.4058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 4·7-s + 8-s + 9-s − 12-s + 13-s − 4·14-s + 16-s + 18-s − 2·19-s + 4·21-s − 6·23-s − 24-s + 26-s − 27-s − 4·28-s − 6·29-s + 2·31-s + 32-s + 36-s + 4·37-s − 2·38-s − 39-s + 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s + 0.277·13-s − 1.06·14-s + 1/4·16-s + 0.235·18-s − 0.458·19-s + 0.872·21-s − 1.25·23-s − 0.204·24-s + 0.196·26-s − 0.192·27-s − 0.755·28-s − 1.11·29-s + 0.359·31-s + 0.176·32-s + 1/6·36-s + 0.657·37-s − 0.324·38-s − 0.160·39-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1884.07\)
Root analytic conductor: \(43.4058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235950,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.556060496\)
\(L(\frac12)\) \(\approx\) \(1.556060496\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78588629074273, −12.49822812109485, −12.17822292984312, −11.60248542374896, −11.04336829219591, −10.69222650655855, −10.22498405239992, −9.644098775851814, −9.335759672161350, −8.839044775709632, −7.913460849910375, −7.697370449990019, −7.054659822066756, −6.444754922080444, −6.185110421067712, −5.843523777814723, −5.321282545413388, −4.515663285233553, −4.167066172127401, −3.619803597239223, −3.166493481941769, −2.445621039717525, −1.991339581721098, −1.073272072415186, −0.3379390063191400, 0.3379390063191400, 1.073272072415186, 1.991339581721098, 2.445621039717525, 3.166493481941769, 3.619803597239223, 4.167066172127401, 4.515663285233553, 5.321282545413388, 5.843523777814723, 6.185110421067712, 6.444754922080444, 7.054659822066756, 7.697370449990019, 7.913460849910375, 8.839044775709632, 9.335759672161350, 9.644098775851814, 10.22498405239992, 10.69222650655855, 11.04336829219591, 11.60248542374896, 12.17822292984312, 12.49822812109485, 12.78588629074273

Graph of the $Z$-function along the critical line