sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(235950, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,0]))
pari:[g,chi] = znchar(Mod(1,235950))
| Modulus: | \(235950\) | |
| Conductor: | \(1\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | yes |
| Primitive: | no, induced from \(\chi_{1}(0,\cdot)\) |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{235950}(1,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((157301,18877,50701,127051)\) → \((1,1,1,1)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
| \( \chi_{ 235950 }(1, a) \) |
\(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)