Properties

Label 2-234432-1.1-c1-0-72
Degree $2$
Conductor $234432$
Sign $-1$
Analytic cond. $1871.94$
Root an. cond. $43.2660$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 11-s + 4·13-s + 6·17-s − 2·19-s + 6·23-s − 5·25-s − 6·29-s − 4·31-s − 37-s − 6·41-s − 2·43-s + 9·49-s + 6·53-s + 6·59-s − 8·61-s + 4·67-s + 12·71-s + 2·73-s − 4·77-s + 2·79-s − 12·83-s − 16·91-s + 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.51·7-s + 0.301·11-s + 1.10·13-s + 1.45·17-s − 0.458·19-s + 1.25·23-s − 25-s − 1.11·29-s − 0.718·31-s − 0.164·37-s − 0.937·41-s − 0.304·43-s + 9/7·49-s + 0.824·53-s + 0.781·59-s − 1.02·61-s + 0.488·67-s + 1.42·71-s + 0.234·73-s − 0.455·77-s + 0.225·79-s − 1.31·83-s − 1.67·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234432\)    =    \(2^{6} \cdot 3^{2} \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(1871.94\)
Root analytic conductor: \(43.2660\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 234432,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
37 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13481545924209, −12.73363007590393, −12.29412482404783, −11.82358273864105, −11.22714222451079, −10.85870752270925, −10.29433488087845, −9.814665393730587, −9.454617437818906, −9.061234480611235, −8.440295028505688, −8.072849383713186, −7.246372546976085, −7.054827256846256, −6.427837359232978, −5.983587614366806, −5.542298998276604, −5.117574386872385, −4.149899669912966, −3.689460705625222, −3.411529815689846, −2.908283018825535, −2.080042554545946, −1.431806381870125, −0.7579417554609899, 0, 0.7579417554609899, 1.431806381870125, 2.080042554545946, 2.908283018825535, 3.411529815689846, 3.689460705625222, 4.149899669912966, 5.117574386872385, 5.542298998276604, 5.983587614366806, 6.427837359232978, 7.054827256846256, 7.246372546976085, 8.072849383713186, 8.440295028505688, 9.061234480611235, 9.454617437818906, 9.814665393730587, 10.29433488087845, 10.85870752270925, 11.22714222451079, 11.82358273864105, 12.29412482404783, 12.73363007590393, 13.13481545924209

Graph of the $Z$-function along the critical line