Properties

Label 2-23400-1.1-c1-0-29
Degree $2$
Conductor $23400$
Sign $-1$
Analytic cond. $186.849$
Root an. cond. $13.6693$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 4·11-s + 13-s − 8·17-s − 2·19-s − 4·23-s − 8·29-s + 10·31-s − 6·37-s + 6·41-s + 8·43-s + 8·47-s − 3·49-s + 12·53-s − 4·59-s + 10·61-s − 2·67-s − 6·73-s − 8·77-s + 12·79-s + 4·83-s − 6·89-s − 2·91-s + 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.755·7-s + 1.20·11-s + 0.277·13-s − 1.94·17-s − 0.458·19-s − 0.834·23-s − 1.48·29-s + 1.79·31-s − 0.986·37-s + 0.937·41-s + 1.21·43-s + 1.16·47-s − 3/7·49-s + 1.64·53-s − 0.520·59-s + 1.28·61-s − 0.244·67-s − 0.702·73-s − 0.911·77-s + 1.35·79-s + 0.439·83-s − 0.635·89-s − 0.209·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23400\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(186.849\)
Root analytic conductor: \(13.6693\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.68192909822992, −15.30442141858397, −14.67971553098559, −13.98673494912340, −13.61184066626614, −13.05493994459882, −12.51655567782416, −11.89388955834313, −11.42872681417059, −10.81041324190584, −10.28255925117562, −9.568222478774334, −9.014941675499891, −8.765808211760327, −7.946318550898144, −7.144244829475990, −6.645400660934827, −6.198209182314357, −5.642988019289612, −4.590566268722672, −4.053995476384019, −3.665614412490217, −2.555285534642237, −2.076746863709567, −1.001088476619033, 0, 1.001088476619033, 2.076746863709567, 2.555285534642237, 3.665614412490217, 4.053995476384019, 4.590566268722672, 5.642988019289612, 6.198209182314357, 6.645400660934827, 7.144244829475990, 7.946318550898144, 8.765808211760327, 9.014941675499891, 9.568222478774334, 10.28255925117562, 10.81041324190584, 11.42872681417059, 11.89388955834313, 12.51655567782416, 13.05493994459882, 13.61184066626614, 13.98673494912340, 14.67971553098559, 15.30442141858397, 15.68192909822992

Graph of the $Z$-function along the critical line