Properties

Label 2-22800-1.1-c1-0-39
Degree $2$
Conductor $22800$
Sign $1$
Analytic cond. $182.058$
Root an. cond. $13.4929$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·7-s + 9-s + 4·11-s + 6·13-s + 6·17-s + 19-s − 4·21-s + 4·23-s + 27-s + 6·29-s + 8·31-s + 4·33-s − 2·37-s + 6·39-s + 10·41-s − 8·43-s + 12·47-s + 9·49-s + 6·51-s − 2·53-s + 57-s + 4·59-s − 2·61-s − 4·63-s − 12·67-s + 4·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.51·7-s + 1/3·9-s + 1.20·11-s + 1.66·13-s + 1.45·17-s + 0.229·19-s − 0.872·21-s + 0.834·23-s + 0.192·27-s + 1.11·29-s + 1.43·31-s + 0.696·33-s − 0.328·37-s + 0.960·39-s + 1.56·41-s − 1.21·43-s + 1.75·47-s + 9/7·49-s + 0.840·51-s − 0.274·53-s + 0.132·57-s + 0.520·59-s − 0.256·61-s − 0.503·63-s − 1.46·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(22800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(182.058\)
Root analytic conductor: \(13.4929\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 22800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.720808537\)
\(L(\frac12)\) \(\approx\) \(3.720808537\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
19 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.53253743868194, −15.05945658032533, −14.18691843873879, −13.86760220543386, −13.52535433766754, −12.64684122988867, −12.46062323780733, −11.75379892205898, −11.13569950720741, −10.33700390159212, −9.968489097843811, −9.335082599807912, −8.905523790869199, −8.373197063754187, −7.667020227843619, −6.898699867540733, −6.385686979925208, −6.060741425411790, −5.201145755784902, −4.160207056143070, −3.695994344548922, −3.170161754411954, −2.604323778575681, −1.223560097957707, −0.9254891095120339, 0.9254891095120339, 1.223560097957707, 2.604323778575681, 3.170161754411954, 3.695994344548922, 4.160207056143070, 5.201145755784902, 6.060741425411790, 6.385686979925208, 6.898699867540733, 7.667020227843619, 8.373197063754187, 8.905523790869199, 9.335082599807912, 9.968489097843811, 10.33700390159212, 11.13569950720741, 11.75379892205898, 12.46062323780733, 12.64684122988867, 13.52535433766754, 13.86760220543386, 14.18691843873879, 15.05945658032533, 15.53253743868194

Graph of the $Z$-function along the critical line