Properties

Label 2-218400-1.1-c1-0-82
Degree $2$
Conductor $218400$
Sign $-1$
Analytic cond. $1743.93$
Root an. cond. $41.7604$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 13-s − 2·17-s + 4·19-s − 21-s − 8·23-s + 27-s − 2·29-s − 8·31-s + 2·37-s − 39-s + 6·41-s − 4·43-s − 8·47-s + 49-s − 2·51-s − 10·53-s + 4·57-s + 12·59-s + 10·61-s − 63-s − 12·67-s − 8·69-s − 2·73-s + 4·79-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.277·13-s − 0.485·17-s + 0.917·19-s − 0.218·21-s − 1.66·23-s + 0.192·27-s − 0.371·29-s − 1.43·31-s + 0.328·37-s − 0.160·39-s + 0.937·41-s − 0.609·43-s − 1.16·47-s + 1/7·49-s − 0.280·51-s − 1.37·53-s + 0.529·57-s + 1.56·59-s + 1.28·61-s − 0.125·63-s − 1.46·67-s − 0.963·69-s − 0.234·73-s + 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 218400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 218400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(218400\)    =    \(2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1743.93\)
Root analytic conductor: \(41.7604\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 218400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09307745580607, −12.96816573374672, −12.28908584454670, −11.83102475479270, −11.41281349206597, −10.87707646725518, −10.29809985536084, −9.817625106760155, −9.522806747456429, −9.022523239488784, −8.547826279574385, −7.871566238616944, −7.641008403784658, −7.134158745542599, −6.422893620181817, −6.164190382681290, −5.377072548011588, −5.044059360544386, −4.253459353588303, −3.829558188600159, −3.340732254664665, −2.767034902496803, −2.032012717285471, −1.751048233388960, −0.7527071386864842, 0, 0.7527071386864842, 1.751048233388960, 2.032012717285471, 2.767034902496803, 3.340732254664665, 3.829558188600159, 4.253459353588303, 5.044059360544386, 5.377072548011588, 6.164190382681290, 6.422893620181817, 7.134158745542599, 7.641008403784658, 7.871566238616944, 8.547826279574385, 9.022523239488784, 9.522806747456429, 9.817625106760155, 10.29809985536084, 10.87707646725518, 11.41281349206597, 11.83102475479270, 12.28908584454670, 12.96816573374672, 13.09307745580607

Graph of the $Z$-function along the critical line