Properties

Label 2-205504-1.1-c1-0-38
Degree $2$
Conductor $205504$
Sign $-1$
Analytic cond. $1640.95$
Root an. cond. $40.5087$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s − 2·7-s + 9-s − 4·15-s − 6·17-s + 19-s − 4·21-s − 25-s − 4·27-s − 4·29-s + 8·31-s + 4·35-s − 6·37-s + 10·41-s − 4·43-s − 2·45-s + 2·47-s − 3·49-s − 12·51-s + 12·53-s + 2·57-s − 4·59-s − 6·61-s − 2·63-s + 4·67-s − 8·71-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.894·5-s − 0.755·7-s + 1/3·9-s − 1.03·15-s − 1.45·17-s + 0.229·19-s − 0.872·21-s − 1/5·25-s − 0.769·27-s − 0.742·29-s + 1.43·31-s + 0.676·35-s − 0.986·37-s + 1.56·41-s − 0.609·43-s − 0.298·45-s + 0.291·47-s − 3/7·49-s − 1.68·51-s + 1.64·53-s + 0.264·57-s − 0.520·59-s − 0.768·61-s − 0.251·63-s + 0.488·67-s − 0.949·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 205504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 205504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(205504\)    =    \(2^{6} \cdot 13^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1640.95\)
Root analytic conductor: \(40.5087\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 205504,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28063351056298, −12.99597120830773, −12.39007205546872, −11.70761905787681, −11.62488227509829, −10.91649583160267, −10.43220524803085, −9.861735070015966, −9.389392340722810, −8.925557909551517, −8.611233047507435, −8.069443300796194, −7.663372348063168, −7.083899332378306, −6.779475171883811, −6.007246096238340, −5.654996291783999, −4.707506953470900, −4.269661628669113, −3.876448294589897, −3.206216515129353, −2.914994207728787, −2.251265303550303, −1.718429962826116, −0.6621659193602437, 0, 0.6621659193602437, 1.718429962826116, 2.251265303550303, 2.914994207728787, 3.206216515129353, 3.876448294589897, 4.269661628669113, 4.707506953470900, 5.654996291783999, 6.007246096238340, 6.779475171883811, 7.083899332378306, 7.663372348063168, 8.069443300796194, 8.611233047507435, 8.925557909551517, 9.389392340722810, 9.861735070015966, 10.43220524803085, 10.91649583160267, 11.62488227509829, 11.70761905787681, 12.39007205546872, 12.99597120830773, 13.28063351056298

Graph of the $Z$-function along the critical line