Properties

Label 2-204490-1.1-c1-0-15
Degree $2$
Conductor $204490$
Sign $1$
Analytic cond. $1632.86$
Root an. cond. $40.4086$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s − 5-s + 2·6-s − 4·7-s − 8-s + 9-s + 10-s − 2·12-s + 4·14-s + 2·15-s + 16-s + 6·17-s − 18-s + 2·19-s − 20-s + 8·21-s + 6·23-s + 2·24-s + 25-s + 4·27-s − 4·28-s + 6·29-s − 2·30-s − 2·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.447·5-s + 0.816·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.577·12-s + 1.06·14-s + 0.516·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.458·19-s − 0.223·20-s + 1.74·21-s + 1.25·23-s + 0.408·24-s + 1/5·25-s + 0.769·27-s − 0.755·28-s + 1.11·29-s − 0.365·30-s − 0.359·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 204490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 204490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(204490\)    =    \(2 \cdot 5 \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1632.86\)
Root analytic conductor: \(40.4086\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 204490,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6690059825\)
\(L(\frac12)\) \(\approx\) \(0.6690059825\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75489487592543, −12.35578177486230, −12.03205001870631, −11.80671568804952, −11.02974833989965, −10.62899464028835, −10.35887845367477, −9.742340552664828, −9.432645612181142, −8.815982265345701, −8.376592335400694, −7.709292783505955, −7.163827624231259, −6.817939064505304, −6.404949455213182, −5.802925619140878, −5.398000411941062, −4.962417465335146, −4.098530073033655, −3.498696818435527, −2.981417344958052, −2.641964682432917, −1.432753097057366, −0.8761763168132313, −0.3813306853382419, 0.3813306853382419, 0.8761763168132313, 1.432753097057366, 2.641964682432917, 2.981417344958052, 3.498696818435527, 4.098530073033655, 4.962417465335146, 5.398000411941062, 5.802925619140878, 6.404949455213182, 6.817939064505304, 7.163827624231259, 7.709292783505955, 8.376592335400694, 8.815982265345701, 9.432645612181142, 9.742340552664828, 10.35887845367477, 10.62899464028835, 11.02974833989965, 11.80671568804952, 12.03205001870631, 12.35578177486230, 12.75489487592543

Graph of the $Z$-function along the critical line