Properties

Label 2-202800-1.1-c1-0-179
Degree $2$
Conductor $202800$
Sign $-1$
Analytic cond. $1619.36$
Root an. cond. $40.2413$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 4·11-s + 2·19-s + 2·21-s − 2·23-s − 27-s + 4·29-s + 4·31-s − 4·33-s − 2·37-s + 6·41-s − 4·43-s − 8·47-s − 3·49-s + 2·53-s − 2·57-s + 4·59-s − 2·61-s − 2·63-s − 8·67-s + 2·69-s + 8·71-s − 4·73-s − 8·77-s − 8·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s + 1.20·11-s + 0.458·19-s + 0.436·21-s − 0.417·23-s − 0.192·27-s + 0.742·29-s + 0.718·31-s − 0.696·33-s − 0.328·37-s + 0.937·41-s − 0.609·43-s − 1.16·47-s − 3/7·49-s + 0.274·53-s − 0.264·57-s + 0.520·59-s − 0.256·61-s − 0.251·63-s − 0.977·67-s + 0.240·69-s + 0.949·71-s − 0.468·73-s − 0.911·77-s − 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 202800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 202800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(202800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1619.36\)
Root analytic conductor: \(40.2413\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 202800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15919584091293, −12.78418697210443, −12.31862277709845, −11.78114629945554, −11.55060694051277, −11.08249288194794, −10.32566817795691, −9.975828729447823, −9.696023800527779, −9.025470403011166, −8.670380645404623, −8.039834470790533, −7.457687500554887, −6.899967606281892, −6.495480087321351, −6.151041957114291, −5.623005756428659, −4.976066864669140, −4.411198831888298, −3.995871546942808, −3.282827294487186, −2.931514311629940, −2.032260024483121, −1.386182090329290, −0.7961515131779508, 0, 0.7961515131779508, 1.386182090329290, 2.032260024483121, 2.931514311629940, 3.282827294487186, 3.995871546942808, 4.411198831888298, 4.976066864669140, 5.623005756428659, 6.151041957114291, 6.495480087321351, 6.899967606281892, 7.457687500554887, 8.039834470790533, 8.670380645404623, 9.025470403011166, 9.696023800527779, 9.975828729447823, 10.32566817795691, 11.08249288194794, 11.55060694051277, 11.78114629945554, 12.31862277709845, 12.78418697210443, 13.15919584091293

Graph of the $Z$-function along the critical line