Properties

Label 2-19800-1.1-c1-0-2
Degree $2$
Conductor $19800$
Sign $1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11-s + 2·13-s − 6·17-s − 4·19-s − 6·29-s − 8·31-s − 6·37-s − 10·41-s + 4·43-s − 8·47-s − 7·49-s − 10·53-s + 12·59-s + 6·61-s + 4·67-s + 14·73-s + 4·83-s + 6·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.301·11-s + 0.554·13-s − 1.45·17-s − 0.917·19-s − 1.11·29-s − 1.43·31-s − 0.986·37-s − 1.56·41-s + 0.609·43-s − 1.16·47-s − 49-s − 1.37·53-s + 1.56·59-s + 0.768·61-s + 0.488·67-s + 1.63·73-s + 0.439·83-s + 0.635·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.301112177\)
\(L(\frac12)\) \(\approx\) \(1.301112177\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.68102737288901, −15.15245826719492, −14.58005854113298, −14.13259457724228, −13.33605783891535, −12.97787345287306, −12.58999362506765, −11.65004598332175, −11.21023712284810, −10.87299106876480, −10.11242004888680, −9.493281978944194, −8.812225602386578, −8.543062683174690, −7.770703057130849, −6.971329616377915, −6.576557696984075, −5.967570613795054, −5.128703966597867, −4.613009666370539, −3.691884203203363, −3.407716080744818, −2.000238080552597, −1.902407496866484, −0.4495850770346294, 0.4495850770346294, 1.902407496866484, 2.000238080552597, 3.407716080744818, 3.691884203203363, 4.613009666370539, 5.128703966597867, 5.967570613795054, 6.576557696984075, 6.971329616377915, 7.770703057130849, 8.543062683174690, 8.812225602386578, 9.493281978944194, 10.11242004888680, 10.87299106876480, 11.21023712284810, 11.65004598332175, 12.58999362506765, 12.97787345287306, 13.33605783891535, 14.13259457724228, 14.58005854113298, 15.15245826719492, 15.68102737288901

Graph of the $Z$-function along the critical line