Properties

Label 2-193550-1.1-c1-0-36
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 9-s − 2·11-s + 2·12-s + 16-s + 6·17-s − 18-s + 5·19-s + 2·22-s − 8·23-s − 2·24-s − 4·27-s − 4·29-s + 5·31-s − 32-s − 4·33-s − 6·34-s + 36-s + 10·37-s − 5·38-s + 3·41-s + 11·43-s − 2·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.603·11-s + 0.577·12-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 1.14·19-s + 0.426·22-s − 1.66·23-s − 0.408·24-s − 0.769·27-s − 0.742·29-s + 0.898·31-s − 0.176·32-s − 0.696·33-s − 1.02·34-s + 1/6·36-s + 1.64·37-s − 0.811·38-s + 0.468·41-s + 1.67·43-s − 0.301·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.561918979\)
\(L(\frac12)\) \(\approx\) \(3.561918979\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20838576686836, −12.57932410354793, −12.06073654608135, −11.75763203478897, −11.19264951899147, −10.46511011847959, −10.20846858830685, −9.673979949271797, −9.240666985240825, −8.978986650886819, −8.076502322051718, −7.981711609311023, −7.552833881751722, −7.261088951636274, −6.280378016073456, −5.717131575853077, −5.595983166346866, −4.648204923375728, −3.879892403159278, −3.614554693693238, −2.831647385213318, −2.471872964976709, −2.013298334976439, −1.042949501415143, −0.6382100552357311, 0.6382100552357311, 1.042949501415143, 2.013298334976439, 2.471872964976709, 2.831647385213318, 3.614554693693238, 3.879892403159278, 4.648204923375728, 5.595983166346866, 5.717131575853077, 6.280378016073456, 7.261088951636274, 7.552833881751722, 7.981711609311023, 8.076502322051718, 8.978986650886819, 9.240666985240825, 9.673979949271797, 10.20846858830685, 10.46511011847959, 11.19264951899147, 11.75763203478897, 12.06073654608135, 12.57932410354793, 13.20838576686836

Graph of the $Z$-function along the critical line