Properties

Label 2-190400-1.1-c1-0-65
Degree $2$
Conductor $190400$
Sign $-1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 3·9-s − 2·11-s − 17-s + 6·19-s − 8·37-s + 6·41-s − 12·43-s + 4·47-s + 49-s − 6·53-s − 6·59-s + 2·61-s + 3·63-s − 8·67-s + 6·73-s + 2·77-s + 9·81-s − 6·83-s − 6·89-s + 2·97-s + 6·99-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.377·7-s − 9-s − 0.603·11-s − 0.242·17-s + 1.37·19-s − 1.31·37-s + 0.937·41-s − 1.82·43-s + 0.583·47-s + 1/7·49-s − 0.824·53-s − 0.781·59-s + 0.256·61-s + 0.377·63-s − 0.977·67-s + 0.702·73-s + 0.227·77-s + 81-s − 0.658·83-s − 0.635·89-s + 0.203·97-s + 0.603·99-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53872968786597, −12.81056250686046, −12.42829466364855, −11.87519660219471, −11.52185721091268, −11.01103220683265, −10.56186007810434, −9.995693951898751, −9.611904869363243, −9.019860650792982, −8.643727979191595, −8.104465419925362, −7.603362375716705, −7.130872486825238, −6.586262685039891, −5.951259088105794, −5.608664897413641, −5.031961788917433, −4.638028626258113, −3.765358558195903, −3.190377779552583, −2.965741696851278, −2.197042788366103, −1.556189321771296, −0.6700104553576071, 0, 0.6700104553576071, 1.556189321771296, 2.197042788366103, 2.965741696851278, 3.190377779552583, 3.765358558195903, 4.638028626258113, 5.031961788917433, 5.608664897413641, 5.951259088105794, 6.586262685039891, 7.130872486825238, 7.603362375716705, 8.104465419925362, 8.643727979191595, 9.019860650792982, 9.611904869363243, 9.995693951898751, 10.56186007810434, 11.01103220683265, 11.52185721091268, 11.87519660219471, 12.42829466364855, 12.81056250686046, 13.53872968786597

Graph of the $Z$-function along the critical line