Properties

Label 2-184800-1.1-c1-0-164
Degree $2$
Conductor $184800$
Sign $1$
Analytic cond. $1475.63$
Root an. cond. $38.4140$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 11-s − 2·13-s − 2·17-s − 4·19-s − 21-s − 4·23-s − 27-s − 6·29-s − 4·31-s − 33-s + 2·37-s + 2·39-s − 6·41-s − 12·43-s + 4·47-s + 49-s + 2·51-s − 6·53-s + 4·57-s + 4·59-s + 2·61-s + 63-s + 12·67-s + 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.301·11-s − 0.554·13-s − 0.485·17-s − 0.917·19-s − 0.218·21-s − 0.834·23-s − 0.192·27-s − 1.11·29-s − 0.718·31-s − 0.174·33-s + 0.328·37-s + 0.320·39-s − 0.937·41-s − 1.82·43-s + 0.583·47-s + 1/7·49-s + 0.280·51-s − 0.824·53-s + 0.529·57-s + 0.520·59-s + 0.256·61-s + 0.125·63-s + 1.46·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184800\)    =    \(2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(1475.63\)
Root analytic conductor: \(38.4140\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 184800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.49990977315685, −13.12071958974282, −12.56634274794183, −12.25401478388833, −11.58942698270266, −11.32875970047759, −10.91002092624436, −10.29143269086676, −9.862355290054614, −9.494667150868549, −8.739819083561037, −8.411851421146918, −7.898867549755918, −7.146043560336805, −6.962615458329778, −6.328907016836172, −5.766456712836484, −5.355242764913530, −4.758055894025599, −4.238890387950976, −3.824193917072467, −3.106103466919045, −2.285714730628095, −1.827272121086861, −1.266203143841036, 0, 0, 1.266203143841036, 1.827272121086861, 2.285714730628095, 3.106103466919045, 3.824193917072467, 4.238890387950976, 4.758055894025599, 5.355242764913530, 5.766456712836484, 6.328907016836172, 6.962615458329778, 7.146043560336805, 7.898867549755918, 8.411851421146918, 8.739819083561037, 9.494667150868549, 9.862355290054614, 10.29143269086676, 10.91002092624436, 11.32875970047759, 11.58942698270266, 12.25401478388833, 12.56634274794183, 13.12071958974282, 13.49990977315685

Graph of the $Z$-function along the critical line