Properties

Label 2-17850-1.1-c1-0-48
Degree $2$
Conductor $17850$
Sign $-1$
Analytic cond. $142.532$
Root an. cond. $11.9387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 7-s + 8-s + 9-s − 12-s + 4·13-s − 14-s + 16-s + 17-s + 18-s + 2·19-s + 21-s − 6·23-s − 24-s + 4·26-s − 27-s − 28-s − 4·31-s + 32-s + 34-s + 36-s − 8·37-s + 2·38-s − 4·39-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s − 0.267·14-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 0.458·19-s + 0.218·21-s − 1.25·23-s − 0.204·24-s + 0.784·26-s − 0.192·27-s − 0.188·28-s − 0.718·31-s + 0.176·32-s + 0.171·34-s + 1/6·36-s − 1.31·37-s + 0.324·38-s − 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(142.532\)
Root analytic conductor: \(11.9387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.97526032809101, −15.86479178151990, −14.92356765419620, −14.38009302921189, −13.88543973655064, −13.15799016317257, −12.97745618315341, −12.13144072335015, −11.75466319447837, −11.24588097491250, −10.54946377376266, −10.10906287437735, −9.482130197748430, −8.623189251550939, −8.109696804618831, −7.283970942342169, −6.721218525209304, −6.185863465017439, −5.510372443029885, −5.166832361315347, −4.089703751710956, −3.748881725850038, −2.998935339508389, −1.969061874477017, −1.229760269697488, 0, 1.229760269697488, 1.969061874477017, 2.998935339508389, 3.748881725850038, 4.089703751710956, 5.166832361315347, 5.510372443029885, 6.185863465017439, 6.721218525209304, 7.283970942342169, 8.109696804618831, 8.623189251550939, 9.482130197748430, 10.10906287437735, 10.54946377376266, 11.24588097491250, 11.75466319447837, 12.13144072335015, 12.97745618315341, 13.15799016317257, 13.88543973655064, 14.38009302921189, 14.92356765419620, 15.86479178151990, 15.97526032809101

Graph of the $Z$-function along the critical line