Properties

Label 17850.bi
Number of curves $4$
Conductor $17850$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 17850.bi have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17850.bi do not have complex multiplication.

Modular form 17850.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} + q^{9} - q^{12} + 4 q^{13} - q^{14} + q^{16} + q^{17} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 17850.bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17850.bi1 17850bf4 \([1, 1, 1, -7314313, 7184527031]\) \(2769646315294225853641/174474906948464640\) \(2726170421069760000000\) \([2]\) \(1327104\) \(2.8642\)  
17850.bi2 17850bf2 \([1, 1, 1, -7199938, 7433032031]\) \(2641739317048851306841/764694000\) \(11948343750000\) \([2]\) \(442368\) \(2.3148\)  
17850.bi3 17850bf1 \([1, 1, 1, -449938, 116032031]\) \(-644706081631626841/347004000000\) \(-5421937500000000\) \([2]\) \(221184\) \(1.9683\) \(\Gamma_0(N)\)-optimal
17850.bi4 17850bf3 \([1, 1, 1, 365687, 472207031]\) \(346124368852751159/6361262220902400\) \(-99394722201600000000\) \([2]\) \(663552\) \(2.5176\)