Properties

Label 2-177600-1.1-c1-0-118
Degree $2$
Conductor $177600$
Sign $-1$
Analytic cond. $1418.14$
Root an. cond. $37.6582$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s + 4·11-s − 2·13-s + 2·17-s + 4·19-s + 4·21-s − 8·23-s − 27-s − 2·29-s − 4·33-s + 37-s + 2·39-s + 10·41-s − 4·43-s + 9·49-s − 2·51-s − 2·53-s − 4·57-s − 4·59-s + 14·61-s − 4·63-s + 4·67-s + 8·69-s − 8·71-s − 2·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s + 0.485·17-s + 0.917·19-s + 0.872·21-s − 1.66·23-s − 0.192·27-s − 0.371·29-s − 0.696·33-s + 0.164·37-s + 0.320·39-s + 1.56·41-s − 0.609·43-s + 9/7·49-s − 0.280·51-s − 0.274·53-s − 0.529·57-s − 0.520·59-s + 1.79·61-s − 0.503·63-s + 0.488·67-s + 0.963·69-s − 0.949·71-s − 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(1418.14\)
Root analytic conductor: \(37.6582\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 177600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
37 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29876927928288, −12.79407001342461, −12.49199528692446, −12.00441275218934, −11.53910575281136, −11.31008981774520, −10.31005509924655, −10.09252021979922, −9.696003949932298, −9.277866799004316, −8.820780579503980, −8.045410372800154, −7.459447754294429, −7.127388332238451, −6.508068948234552, −6.044787646992258, −5.839043310069122, −5.106999942874849, −4.453750522198070, −3.785112032074320, −3.590183337649622, −2.827423636281752, −2.191382274198890, −1.390953518392424, −0.7105093902115223, 0, 0.7105093902115223, 1.390953518392424, 2.191382274198890, 2.827423636281752, 3.590183337649622, 3.785112032074320, 4.453750522198070, 5.106999942874849, 5.839043310069122, 6.044787646992258, 6.508068948234552, 7.127388332238451, 7.459447754294429, 8.045410372800154, 8.820780579503980, 9.277866799004316, 9.696003949932298, 10.09252021979922, 10.31005509924655, 11.31008981774520, 11.53910575281136, 12.00441275218934, 12.49199528692446, 12.79407001342461, 13.29876927928288

Graph of the $Z$-function along the critical line