Properties

Label 2-172480-1.1-c1-0-121
Degree $2$
Conductor $172480$
Sign $-1$
Analytic cond. $1377.25$
Root an. cond. $37.1114$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s + 9-s − 11-s − 2·15-s − 4·23-s + 25-s + 4·27-s − 2·29-s + 2·31-s + 2·33-s + 6·37-s − 8·41-s + 12·43-s + 45-s + 6·47-s + 6·53-s − 55-s − 10·59-s − 4·61-s + 8·67-s + 8·69-s − 4·71-s + 4·73-s − 2·75-s − 16·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s + 1/3·9-s − 0.301·11-s − 0.516·15-s − 0.834·23-s + 1/5·25-s + 0.769·27-s − 0.371·29-s + 0.359·31-s + 0.348·33-s + 0.986·37-s − 1.24·41-s + 1.82·43-s + 0.149·45-s + 0.875·47-s + 0.824·53-s − 0.134·55-s − 1.30·59-s − 0.512·61-s + 0.977·67-s + 0.963·69-s − 0.474·71-s + 0.468·73-s − 0.230·75-s − 1.80·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(172480\)    =    \(2^{6} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(1377.25\)
Root analytic conductor: \(37.1114\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 172480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45540222504090, −12.83107008237662, −12.42837103922973, −12.00994315099130, −11.57860988879578, −11.01825072464069, −10.69579858689918, −10.23563061466181, −9.720136041769161, −9.285019083862445, −8.603829986473058, −8.228596708486030, −7.454960161700174, −7.184278796989477, −6.376778024927764, −6.098570018639334, −5.628164743601169, −5.244146258195191, −4.527963906390890, −4.202992876882283, −3.382952615002357, −2.691702262384062, −2.185880897364861, −1.380175681472593, −0.7278830419894913, 0, 0.7278830419894913, 1.380175681472593, 2.185880897364861, 2.691702262384062, 3.382952615002357, 4.202992876882283, 4.527963906390890, 5.244146258195191, 5.628164743601169, 6.098570018639334, 6.376778024927764, 7.184278796989477, 7.454960161700174, 8.228596708486030, 8.603829986473058, 9.285019083862445, 9.720136041769161, 10.23563061466181, 10.69579858689918, 11.01825072464069, 11.57860988879578, 12.00994315099130, 12.42837103922973, 12.83107008237662, 13.45540222504090

Graph of the $Z$-function along the critical line