Properties

Label 2-159936-1.1-c1-0-183
Degree $2$
Conductor $159936$
Sign $-1$
Analytic cond. $1277.09$
Root an. cond. $35.7364$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s − 4·11-s + 2·13-s − 2·15-s + 17-s + 4·19-s − 4·23-s − 25-s + 27-s + 2·29-s + 8·31-s − 4·33-s + 2·37-s + 2·39-s + 2·41-s + 8·43-s − 2·45-s + 51-s − 6·53-s + 8·55-s + 4·57-s − 4·59-s + 2·61-s − 4·65-s − 8·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s − 1.20·11-s + 0.554·13-s − 0.516·15-s + 0.242·17-s + 0.917·19-s − 0.834·23-s − 1/5·25-s + 0.192·27-s + 0.371·29-s + 1.43·31-s − 0.696·33-s + 0.328·37-s + 0.320·39-s + 0.312·41-s + 1.21·43-s − 0.298·45-s + 0.140·51-s − 0.824·53-s + 1.07·55-s + 0.529·57-s − 0.520·59-s + 0.256·61-s − 0.496·65-s − 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 159936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 159936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(159936\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1277.09\)
Root analytic conductor: \(35.7364\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 159936,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63315238411716, −13.12258434903467, −12.42919341484588, −12.21760039472868, −11.64297536181205, −11.14824813055814, −10.65594932574796, −10.17535319285583, −9.681823501114233, −9.230952778668128, −8.535761741226618, −8.032644072618437, −7.873913084440818, −7.434768678783140, −6.774460987977125, −6.125999315945653, −5.641530870556149, −5.024735900218196, −4.365232190465762, −4.044306149944106, −3.321330003161221, −2.865648469219182, −2.394884914509595, −1.498393476446008, −0.8201295880497604, 0, 0.8201295880497604, 1.498393476446008, 2.394884914509595, 2.865648469219182, 3.321330003161221, 4.044306149944106, 4.365232190465762, 5.024735900218196, 5.641530870556149, 6.125999315945653, 6.774460987977125, 7.434768678783140, 7.873913084440818, 8.032644072618437, 8.535761741226618, 9.230952778668128, 9.681823501114233, 10.17535319285583, 10.65594932574796, 11.14824813055814, 11.64297536181205, 12.21760039472868, 12.42919341484588, 13.12258434903467, 13.63315238411716

Graph of the $Z$-function along the critical line