Properties

Label 159936.gl
Number of curves $4$
Conductor $159936$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 159936.gl have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 159936.gl do not have complex multiplication.

Modular form 159936.2.a.gl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} - 4 q^{11} + 2 q^{13} - 2 q^{15} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 159936.gl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
159936.gl1 159936l3 \([0, 1, 0, -24818369, 41079702495]\) \(438536015880092936/64602489661101\) \(249050507055558542917632\) \([2]\) \(14155776\) \(3.2141\)  
159936.gl2 159936l2 \([0, 1, 0, -6666809, -5994553209]\) \(68003243639904448/7163272192041\) \(3451911414257383870464\) \([2, 2]\) \(7077888\) \(2.8675\)  
159936.gl3 159936l1 \([0, 1, 0, -6488204, -6363229650]\) \(4011705594213827392/52680152007\) \(396657101022178752\) \([2]\) \(3538944\) \(2.5209\) \(\Gamma_0(N)\)-optimal
159936.gl4 159936l4 \([0, 1, 0, 8627071, -29470659009]\) \(18419405270942584/108003564029403\) \(-416366962425699812868096\) \([2]\) \(14155776\) \(3.2141\)