Properties

Label 2-14784-1.1-c1-0-63
Degree $2$
Conductor $14784$
Sign $1$
Analytic cond. $118.050$
Root an. cond. $10.8651$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s − 7-s + 9-s + 11-s − 6·13-s + 4·15-s − 2·19-s + 21-s − 4·23-s + 11·25-s − 27-s + 2·29-s + 2·31-s − 33-s + 4·35-s − 2·37-s + 6·39-s − 4·43-s − 4·45-s − 6·47-s + 49-s − 2·53-s − 4·55-s + 2·57-s − 14·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s − 0.377·7-s + 1/3·9-s + 0.301·11-s − 1.66·13-s + 1.03·15-s − 0.458·19-s + 0.218·21-s − 0.834·23-s + 11/5·25-s − 0.192·27-s + 0.371·29-s + 0.359·31-s − 0.174·33-s + 0.676·35-s − 0.328·37-s + 0.960·39-s − 0.609·43-s − 0.596·45-s − 0.875·47-s + 1/7·49-s − 0.274·53-s − 0.539·55-s + 0.264·57-s − 1.79·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14784\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(118.050\)
Root analytic conductor: \(10.8651\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 14784,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.56967913721091, −16.16838666780415, −15.37775448765881, −15.23278754832496, −14.54078680487807, −13.97774302590271, −13.00407977775262, −12.54003209994791, −11.90412657230937, −11.86552419492383, −11.13711225477739, −10.36409598105143, −10.01168269872835, −9.148650788291690, −8.510967560979305, −7.754693036440342, −7.445331110384088, −6.763953717530142, −6.198872928089458, −5.209418401656287, −4.539742974076175, −4.198248714442164, −3.314929085696920, −2.655001923426188, −1.428275387260502, 0, 0, 1.428275387260502, 2.655001923426188, 3.314929085696920, 4.198248714442164, 4.539742974076175, 5.209418401656287, 6.198872928089458, 6.763953717530142, 7.445331110384088, 7.754693036440342, 8.510967560979305, 9.148650788291690, 10.01168269872835, 10.36409598105143, 11.13711225477739, 11.86552419492383, 11.90412657230937, 12.54003209994791, 13.00407977775262, 13.97774302590271, 14.54078680487807, 15.23278754832496, 15.37775448765881, 16.16838666780415, 16.56967913721091

Graph of the $Z$-function along the critical line