Properties

Label 2-143650-1.1-c1-0-41
Degree $2$
Conductor $143650$
Sign $-1$
Analytic cond. $1147.05$
Root an. cond. $33.8681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s + 2·6-s − 2·7-s + 8-s + 9-s + 2·12-s − 2·14-s + 16-s + 17-s + 18-s − 4·19-s − 4·21-s − 4·23-s + 2·24-s − 4·27-s − 2·28-s − 8·29-s + 10·31-s + 32-s + 34-s + 36-s − 2·37-s − 4·38-s + 8·41-s − 4·42-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.577·12-s − 0.534·14-s + 1/4·16-s + 0.242·17-s + 0.235·18-s − 0.917·19-s − 0.872·21-s − 0.834·23-s + 0.408·24-s − 0.769·27-s − 0.377·28-s − 1.48·29-s + 1.79·31-s + 0.176·32-s + 0.171·34-s + 1/6·36-s − 0.328·37-s − 0.648·38-s + 1.24·41-s − 0.617·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143650\)    =    \(2 \cdot 5^{2} \cdot 13^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1147.05\)
Root analytic conductor: \(33.8681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 143650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63200699359362, −13.24994361976582, −12.80536982817098, −12.31809745191458, −11.91731198854803, −11.23290015182664, −10.80474699379187, −10.17826051616894, −9.740630365480855, −9.271466585760721, −8.796609323467923, −8.174266666278934, −7.839556181803002, −7.306396420415237, −6.633363133089187, −6.252915345956476, −5.660519322447821, −5.201931546537479, −4.201219925750669, −4.023551538720346, −3.521464126255691, −2.743009583127247, −2.489385846234733, −1.914069459167306, −0.9850008064491806, 0, 0.9850008064491806, 1.914069459167306, 2.489385846234733, 2.743009583127247, 3.521464126255691, 4.023551538720346, 4.201219925750669, 5.201931546537479, 5.660519322447821, 6.252915345956476, 6.633363133089187, 7.306396420415237, 7.839556181803002, 8.174266666278934, 8.796609323467923, 9.271466585760721, 9.740630365480855, 10.17826051616894, 10.80474699379187, 11.23290015182664, 11.91731198854803, 12.31809745191458, 12.80536982817098, 13.24994361976582, 13.63200699359362

Graph of the $Z$-function along the critical line