Properties

Label 2-122304-1.1-c1-0-212
Degree $2$
Conductor $122304$
Sign $-1$
Analytic cond. $976.602$
Root an. cond. $31.2506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s + 4·11-s − 13-s + 2·15-s + 2·17-s − 8·23-s − 25-s + 27-s + 2·29-s − 8·31-s + 4·33-s + 6·37-s − 39-s − 6·41-s + 4·43-s + 2·45-s + 12·47-s + 2·51-s − 6·53-s + 8·55-s − 4·59-s + 2·61-s − 2·65-s − 12·67-s − 8·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s + 1.20·11-s − 0.277·13-s + 0.516·15-s + 0.485·17-s − 1.66·23-s − 1/5·25-s + 0.192·27-s + 0.371·29-s − 1.43·31-s + 0.696·33-s + 0.986·37-s − 0.160·39-s − 0.937·41-s + 0.609·43-s + 0.298·45-s + 1.75·47-s + 0.280·51-s − 0.824·53-s + 1.07·55-s − 0.520·59-s + 0.256·61-s − 0.248·65-s − 1.46·67-s − 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122304\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(976.602\)
Root analytic conductor: \(31.2506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 122304,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.94482761455816, −13.45885483630634, −12.79379207807874, −12.44466121014264, −11.83336344349876, −11.54836000156175, −10.74556964534077, −10.22136018290546, −9.883750835160965, −9.361446334365144, −8.988598579706862, −8.555175161396973, −7.660472477011590, −7.584349776160369, −6.807286366173318, −6.151988492186862, −5.919446604008922, −5.326861106887364, −4.476637855258088, −4.069346949574545, −3.527423788885852, −2.829717972147563, −2.152087920289148, −1.697077030179612, −1.106287082863818, 0, 1.106287082863818, 1.697077030179612, 2.152087920289148, 2.829717972147563, 3.527423788885852, 4.069346949574545, 4.476637855258088, 5.326861106887364, 5.919446604008922, 6.151988492186862, 6.807286366173318, 7.584349776160369, 7.660472477011590, 8.555175161396973, 8.988598579706862, 9.361446334365144, 9.883750835160965, 10.22136018290546, 10.74556964534077, 11.54836000156175, 11.83336344349876, 12.44466121014264, 12.79379207807874, 13.45885483630634, 13.94482761455816

Graph of the $Z$-function along the critical line