Properties

Label 122304.hz
Number of curves $4$
Conductor $122304$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 122304.hz have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 122304.hz do not have complex multiplication.

Modular form 122304.2.a.hz

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + q^{9} + 4 q^{11} - q^{13} + 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 122304.hz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122304.hz1 122304dg4 \([0, 1, 0, -84737, 9421887]\) \(17454600584/93639\) \(360989809410048\) \([2]\) \(589824\) \(1.6375\)  
122304.hz2 122304dg2 \([0, 1, 0, -8297, -41385]\) \(131096512/74529\) \(35914802466816\) \([2, 2]\) \(294912\) \(1.2909\)  
122304.hz3 122304dg1 \([0, 1, 0, -6092, -184710]\) \(3321287488/7371\) \(55500209856\) \([2]\) \(147456\) \(0.94431\) \(\Gamma_0(N)\)-optimal
122304.hz4 122304dg3 \([0, 1, 0, 32863, -296577]\) \(1018108216/599781\) \(-2312229187387392\) \([2]\) \(589824\) \(1.6375\)