Properties

Label 2-104e2-1.1-c1-0-38
Degree $2$
Conductor $10816$
Sign $-1$
Analytic cond. $86.3661$
Root an. cond. $9.29334$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s − 7-s + 6·9-s − 2·11-s − 3·15-s − 3·17-s + 6·19-s − 3·21-s − 4·23-s − 4·25-s + 9·27-s − 2·29-s − 4·31-s − 6·33-s + 35-s + 3·37-s + 5·43-s − 6·45-s − 13·47-s − 6·49-s − 9·51-s − 12·53-s + 2·55-s + 18·57-s − 10·59-s + 8·61-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s − 0.377·7-s + 2·9-s − 0.603·11-s − 0.774·15-s − 0.727·17-s + 1.37·19-s − 0.654·21-s − 0.834·23-s − 4/5·25-s + 1.73·27-s − 0.371·29-s − 0.718·31-s − 1.04·33-s + 0.169·35-s + 0.493·37-s + 0.762·43-s − 0.894·45-s − 1.89·47-s − 6/7·49-s − 1.26·51-s − 1.64·53-s + 0.269·55-s + 2.38·57-s − 1.30·59-s + 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10816\)    =    \(2^{6} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(86.3661\)
Root analytic conductor: \(9.29334\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10816,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 13 T + p T^{2} \) 1.47.n
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.46136795649626, −16.01375199288389, −15.63091047140781, −15.12016126894525, −14.49200429748958, −13.89009095450240, −13.61018544864798, −12.78664723720726, −12.59075349787387, −11.51561958845496, −11.08701501109741, −10.09885137884058, −9.545522687466834, −9.337673611302506, −8.372504302205781, −7.952773675345803, −7.549275187558091, −6.837934892432402, −5.992691282957394, −5.032529861838328, −4.257701026641828, −3.540702448211370, −3.090632834420291, −2.278417408877418, −1.529417331846637, 0, 1.529417331846637, 2.278417408877418, 3.090632834420291, 3.540702448211370, 4.257701026641828, 5.032529861838328, 5.992691282957394, 6.837934892432402, 7.549275187558091, 7.952773675345803, 8.372504302205781, 9.337673611302506, 9.545522687466834, 10.09885137884058, 11.08701501109741, 11.51561958845496, 12.59075349787387, 12.78664723720726, 13.61018544864798, 13.89009095450240, 14.49200429748958, 15.12016126894525, 15.63091047140781, 16.01375199288389, 16.46136795649626

Graph of the $Z$-function along the critical line