Base field \(\Q(\sqrt{26}) \)
Generator \(w\), with minimal polynomial \(x^{2} - 26\); narrow class number \(2\) and class number \(2\).
Form
Weight: | $[2, 2]$ |
Level: | $[26, 26, w]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $48$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w]$ | $\phantom{-}1$ |
5 | $[5, 5, w + 1]$ | $-1$ |
5 | $[5, 5, w + 4]$ | $-1$ |
9 | $[9, 3, 3]$ | $\phantom{-}3$ |
11 | $[11, 11, w + 2]$ | $-2$ |
11 | $[11, 11, w + 9]$ | $-2$ |
13 | $[13, 13, w]$ | $-1$ |
17 | $[17, 17, w + 3]$ | $-3$ |
17 | $[17, 17, -w + 3]$ | $-3$ |
19 | $[19, 19, w + 8]$ | $\phantom{-}6$ |
19 | $[19, 19, w + 11]$ | $\phantom{-}6$ |
23 | $[23, 23, -w - 7]$ | $-4$ |
23 | $[23, 23, w - 7]$ | $-4$ |
37 | $[37, 37, w + 10]$ | $\phantom{-}3$ |
37 | $[37, 37, w + 27]$ | $\phantom{-}3$ |
49 | $[49, 7, -7]$ | $-13$ |
59 | $[59, 59, w + 12]$ | $-10$ |
59 | $[59, 59, w + 47]$ | $-10$ |
67 | $[67, 67, w + 19]$ | $-2$ |
67 | $[67, 67, w + 48]$ | $-2$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, w]$ | $-1$ |
$13$ | $[13, 13, w]$ | $1$ |