Properties

Label 2-10780-1.1-c1-0-1
Degree $2$
Conductor $10780$
Sign $1$
Analytic cond. $86.0787$
Root an. cond. $9.27786$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s + 9-s + 11-s + 2·15-s + 4·17-s + 4·19-s + 6·23-s + 25-s + 4·27-s + 2·29-s − 2·33-s − 6·37-s + 10·41-s + 4·43-s − 45-s − 10·47-s − 8·51-s + 2·53-s − 55-s − 8·57-s + 4·59-s + 14·61-s + 2·67-s − 12·69-s + 4·71-s + 4·73-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s + 1/3·9-s + 0.301·11-s + 0.516·15-s + 0.970·17-s + 0.917·19-s + 1.25·23-s + 1/5·25-s + 0.769·27-s + 0.371·29-s − 0.348·33-s − 0.986·37-s + 1.56·41-s + 0.609·43-s − 0.149·45-s − 1.45·47-s − 1.12·51-s + 0.274·53-s − 0.134·55-s − 1.05·57-s + 0.520·59-s + 1.79·61-s + 0.244·67-s − 1.44·69-s + 0.474·71-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10780\)    =    \(2^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(86.0787\)
Root analytic conductor: \(9.27786\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10780,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.295140451\)
\(L(\frac12)\) \(\approx\) \(1.295140451\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.51727268569085, −16.09818926792441, −15.60577296299757, −14.76260062283090, −14.33934411945865, −13.72152398722215, −12.74939488302827, −12.50322806623458, −11.82066498715776, −11.24734805030841, −11.04461708602105, −10.09768113031334, −9.698908329424315, −8.799722946785967, −8.245184420506002, −7.351626572234970, −6.957143816239601, −6.191003103500198, −5.443622346156657, −5.113586976499486, −4.248523428684121, −3.418963656472665, −2.702495928017239, −1.302111686133630, −0.6432707623956495, 0.6432707623956495, 1.302111686133630, 2.702495928017239, 3.418963656472665, 4.248523428684121, 5.113586976499486, 5.443622346156657, 6.191003103500198, 6.957143816239601, 7.351626572234970, 8.245184420506002, 8.799722946785967, 9.698908329424315, 10.09768113031334, 11.04461708602105, 11.24734805030841, 11.82066498715776, 12.50322806623458, 12.74939488302827, 13.72152398722215, 14.33934411945865, 14.76260062283090, 15.60577296299757, 16.09818926792441, 16.51727268569085

Graph of the $Z$-function along the critical line