Properties

Label 2-103488-1.1-c1-0-19
Degree $2$
Conductor $103488$
Sign $1$
Analytic cond. $826.355$
Root an. cond. $28.7464$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s − 11-s − 6·13-s + 2·15-s − 2·17-s − 4·19-s − 4·23-s − 25-s + 27-s − 6·29-s − 33-s − 6·37-s − 6·39-s + 6·41-s + 4·43-s + 2·45-s − 12·47-s − 2·51-s − 2·53-s − 2·55-s − 4·57-s − 12·59-s − 14·61-s − 12·65-s + 4·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s − 0.301·11-s − 1.66·13-s + 0.516·15-s − 0.485·17-s − 0.917·19-s − 0.834·23-s − 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.174·33-s − 0.986·37-s − 0.960·39-s + 0.937·41-s + 0.609·43-s + 0.298·45-s − 1.75·47-s − 0.280·51-s − 0.274·53-s − 0.269·55-s − 0.529·57-s − 1.56·59-s − 1.79·61-s − 1.48·65-s + 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103488\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(826.355\)
Root analytic conductor: \(28.7464\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 103488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.178293377\)
\(L(\frac12)\) \(\approx\) \(1.178293377\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.92134215703255, −13.20301403612485, −12.73704779427546, −12.48973420439216, −11.87120809665678, −11.16424767178777, −10.71627007260541, −10.12121488230078, −9.752672465878635, −9.328135152019063, −8.916805063147369, −8.194177867679492, −7.667054228918326, −7.378334393561165, −6.555323114449654, −6.210728452667866, −5.562706459164403, −4.921372628983167, −4.545335233182027, −3.822711548688057, −3.149624488797140, −2.420094770801016, −2.061141195947709, −1.611889945202637, −0.2920422198693138, 0.2920422198693138, 1.611889945202637, 2.061141195947709, 2.420094770801016, 3.149624488797140, 3.822711548688057, 4.545335233182027, 4.921372628983167, 5.562706459164403, 6.210728452667866, 6.555323114449654, 7.378334393561165, 7.667054228918326, 8.194177867679492, 8.916805063147369, 9.328135152019063, 9.752672465878635, 10.12121488230078, 10.71627007260541, 11.16424767178777, 11.87120809665678, 12.48973420439216, 12.73704779427546, 13.20301403612485, 13.92134215703255

Graph of the $Z$-function along the critical line