| L(s)  = 1  |   − 2-s   + 3-s   + 4-s   − 2·5-s   − 6-s   − 2·7-s   − 8-s   + 9-s   + 2·10-s     + 12-s     + 2·14-s   − 2·15-s   + 16-s   + 2·17-s   − 18-s   + 6·19-s   − 2·20-s   − 2·21-s     − 4·23-s   − 24-s   − 25-s     + 27-s   − 2·28-s   − 10·29-s   + 2·30-s   − 10·31-s   − 32-s  + ⋯ | 
 
| L(s)  = 1  |   − 0.707·2-s   + 0.577·3-s   + 1/2·4-s   − 0.894·5-s   − 0.408·6-s   − 0.755·7-s   − 0.353·8-s   + 1/3·9-s   + 0.632·10-s     + 0.288·12-s     + 0.534·14-s   − 0.516·15-s   + 1/4·16-s   + 0.485·17-s   − 0.235·18-s   + 1.37·19-s   − 0.447·20-s   − 0.436·21-s     − 0.834·23-s   − 0.204·24-s   − 1/5·25-s     + 0.192·27-s   − 0.377·28-s   − 1.85·29-s   + 0.365·30-s   − 1.79·31-s   − 0.176·32-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 + T \)  |    | 
 | 3 |  \( 1 - T \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 5 |  \( 1 + 2 T + p T^{2} \)  |  1.5.c  | 
 | 7 |  \( 1 + 2 T + p T^{2} \)  |  1.7.c  | 
 | 11 |  \( 1 + p T^{2} \)  |  1.11.a  | 
 | 17 |  \( 1 - 2 T + p T^{2} \)  |  1.17.ac  | 
 | 19 |  \( 1 - 6 T + p T^{2} \)  |  1.19.ag  | 
 | 23 |  \( 1 + 4 T + p T^{2} \)  |  1.23.e  | 
 | 29 |  \( 1 + 10 T + p T^{2} \)  |  1.29.k  | 
 | 31 |  \( 1 + 10 T + p T^{2} \)  |  1.31.k  | 
 | 37 |  \( 1 - 8 T + p T^{2} \)  |  1.37.ai  | 
 | 41 |  \( 1 + 10 T + p T^{2} \)  |  1.41.k  | 
 | 43 |  \( 1 + 4 T + p T^{2} \)  |  1.43.e  | 
 | 47 |  \( 1 + 12 T + p T^{2} \)  |  1.47.m  | 
 | 53 |  \( 1 + 6 T + p T^{2} \)  |  1.53.g  | 
 | 59 |  \( 1 - 4 T + p T^{2} \)  |  1.59.ae  | 
 | 61 |  \( 1 - 2 T + p T^{2} \)  |  1.61.ac  | 
 | 67 |  \( 1 - 2 T + p T^{2} \)  |  1.67.ac  | 
 | 71 |  \( 1 + p T^{2} \)  |  1.71.a  | 
 | 73 |  \( 1 + 4 T + p T^{2} \)  |  1.73.e  | 
 | 79 |  \( 1 + p T^{2} \)  |  1.79.a  | 
 | 83 |  \( 1 - 4 T + p T^{2} \)  |  1.83.ae  | 
 | 89 |  \( 1 + 6 T + p T^{2} \)  |  1.89.g  | 
 | 97 |  \( 1 - 12 T + p T^{2} \)  |  1.97.am  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.640791322379534312317268263332, −8.733226088694874330202531558278, −7.72635236122700537791758242828, −7.48225643732914189291632299460, −6.36202848183618365798599646203, −5.25884034922839215249485111848, −3.72725018247659066479821371636, −3.27299015443475162705655779949, −1.76712137722831607625576187625, 0, 
1.76712137722831607625576187625, 3.27299015443475162705655779949, 3.72725018247659066479821371636, 5.25884034922839215249485111848, 6.36202848183618365798599646203, 7.48225643732914189291632299460, 7.72635236122700537791758242828, 8.733226088694874330202531558278, 9.640791322379534312317268263332