L(s) = 1 | − 4-s + 2·5-s + 5·7-s + 2·8-s + 2·9-s − 2·13-s + 16-s − 2·20-s − 25-s − 5·28-s − 4·32-s + 10·35-s − 2·36-s + 4·37-s + 4·40-s + 4·45-s − 20·47-s + 14·49-s + 2·52-s + 10·56-s + 4·61-s + 10·63-s + 3·64-s − 4·65-s − 28·67-s + 4·72-s − 4·73-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 0.894·5-s + 1.88·7-s + 0.707·8-s + 2/3·9-s − 0.554·13-s + 1/4·16-s − 0.447·20-s − 1/5·25-s − 0.944·28-s − 0.707·32-s + 1.69·35-s − 1/3·36-s + 0.657·37-s + 0.632·40-s + 0.596·45-s − 2.91·47-s + 2·49-s + 0.277·52-s + 1.33·56-s + 0.512·61-s + 1.25·63-s + 3/8·64-s − 0.496·65-s − 3.42·67-s + 0.471·72-s − 0.468·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 59150 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59150 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.954895180\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.954895180\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01680481248676236476980323249, −9.605275744492367615540507161613, −8.875484026397415534891822107632, −8.481424311947461205547125578809, −7.82369930024139171738123114373, −7.58068525353008675932779773298, −6.97905507864066321638177931695, −6.18794458648678176742830536399, −5.53295912747360394652127388609, −5.01084077846916460603868436209, −4.53694860945779743314912752035, −4.16597088998770786434292076864, −2.96277527305276669461039847338, −1.80857614108946620467904953688, −1.52874685361915009751032215020,
1.52874685361915009751032215020, 1.80857614108946620467904953688, 2.96277527305276669461039847338, 4.16597088998770786434292076864, 4.53694860945779743314912752035, 5.01084077846916460603868436209, 5.53295912747360394652127388609, 6.18794458648678176742830536399, 6.97905507864066321638177931695, 7.58068525353008675932779773298, 7.82369930024139171738123114373, 8.481424311947461205547125578809, 8.875484026397415534891822107632, 9.605275744492367615540507161613, 10.01680481248676236476980323249