Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 62 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.338046591249$, $\pm0.661953408751$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-5}, \sqrt{14})\) |
Galois group: | $C_2^2$ |
Jacobians: | $222$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3544$ | $12559936$ | $42180124504$ | $146906035430400$ | $511116753825057304$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3606$ | $205380$ | $12123598$ | $714924300$ | $42179715366$ | $2488651484820$ | $146830466629918$ | $8662995818654940$ | $511116754349473206$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 222 curves (of which all are hyperelliptic):
- $y^2=55 x^6+28 x^5+38 x^4+53 x^3+5 x^2+46 x+2$
- $y^2=51 x^6+56 x^5+17 x^4+47 x^3+10 x^2+33 x+4$
- $y^2=37 x^6+46 x^5+14 x^4+42 x^3+56 x^2+47 x+27$
- $y^2=55 x^6+2 x^5+51 x^4+22 x^3+17 x^2+29 x+41$
- $y^2=51 x^6+4 x^5+43 x^4+44 x^3+34 x^2+58 x+23$
- $y^2=28 x^6+56 x^5+27 x^4+54 x^3+28 x^2+24 x+10$
- $y^2=56 x^6+53 x^5+54 x^4+49 x^3+56 x^2+48 x+20$
- $y^2=43 x^6+53 x^5+17 x^4+58 x^3+25 x^2+47 x+14$
- $y^2=27 x^6+47 x^5+34 x^4+57 x^3+50 x^2+35 x+28$
- $y^2=50 x^6+57 x^5+10 x^4+20 x^3+58 x^2+42 x+51$
- $y^2=4 x^6+21 x^5+49 x^4+17 x^3+46 x^2+48 x+44$
- $y^2=11 x^6+9 x^5+36 x^4+11 x^3+26 x^2+19 x+51$
- $y^2=22 x^6+18 x^5+13 x^4+22 x^3+52 x^2+38 x+43$
- $y^2=16 x^6+9 x^5+49 x^4+21 x^3+7 x^2+5 x+17$
- $y^2=55 x^6+33 x^5+29 x^4+58 x^3+52 x^2+6 x+57$
- $y^2=51 x^6+7 x^5+58 x^4+57 x^3+45 x^2+12 x+55$
- $y^2=9 x^6+54 x^5+16 x^3+55 x^2+25 x+9$
- $y^2=18 x^6+49 x^5+32 x^3+51 x^2+50 x+18$
- $y^2=38 x^6+52 x^5+44 x^4+32 x^3+56 x^2+18 x+42$
- $y^2=17 x^6+45 x^5+29 x^4+5 x^3+53 x^2+36 x+25$
- and 202 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-5}, \sqrt{14})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.ck 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-70}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.a_ack | $4$ | (not in LMFDB) |