Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 118 x^{2} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.406111524872$, $\pm0.593888475128$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{6}, \sqrt{-65})\) |
Galois group: | $C_2^2$ |
Jacobians: | $424$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5160$ | $26625600$ | $128100142440$ | $645558333465600$ | $3255243547467729000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $5278$ | $357912$ | $25403998$ | $1804229352$ | $128100000958$ | $9095120158392$ | $645753603370558$ | $45848500718449032$ | $3255243543925576798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 424 curves (of which all are hyperelliptic):
- $y^2=62 x^6+12 x^5+49 x^4+30 x^3+10 x^2+69 x+66$
- $y^2=8 x^6+13 x^5+59 x^4+68 x^3+70 x^2+57 x+36$
- $y^2=48 x^6+67 x^5+2 x^4+6 x^3+23 x^2+68 x+53$
- $y^2=52 x^6+43 x^5+14 x^4+42 x^3+19 x^2+50 x+16$
- $y^2=34 x^5+10 x^4+5 x^2+34 x+29$
- $y^2=25 x^5+70 x^4+35 x^2+25 x+61$
- $y^2=34 x^6+46 x^5+35 x^4+60 x^3+67 x^2+37 x+46$
- $y^2=25 x^6+38 x^5+32 x^4+65 x^3+43 x^2+46 x+38$
- $y^2=35 x^6+26 x^5+30 x^4+69 x^3+21 x+58$
- $y^2=32 x^6+40 x^5+68 x^4+57 x^3+5 x+51$
- $y^2=44 x^6+6 x^5+18 x^4+46 x^3+19 x^2+15 x+52$
- $y^2=46 x^6+46 x^5+67 x^4+17 x^3+30 x^2+43 x+10$
- $y^2=38 x^6+38 x^5+43 x^4+48 x^3+68 x^2+17 x+70$
- $y^2=49 x^6+34 x^5+9 x^4+3 x^3+33 x^2+4 x+49$
- $y^2=25 x^6+55 x^5+41 x^4+60 x^3+50 x^2+25 x+11$
- $y^2=33 x^6+30 x^5+3 x^4+65 x^3+66 x^2+33 x+6$
- $y^2=46 x^6+6 x^5+46 x^4+31 x^3+51 x^2+62 x+33$
- $y^2=38 x^6+42 x^5+38 x^4+4 x^3+2 x^2+8 x+18$
- $y^2=15 x^6+19 x^5+18 x^4+14 x^3+12 x^2+32 x+30$
- $y^2=34 x^6+62 x^5+55 x^4+27 x^3+13 x^2+11 x+68$
- and 404 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-65})\). |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.eo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-390}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.a_aeo | $4$ | (not in LMFDB) |