Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 62 x^{2} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.306622954263$, $\pm0.693377045737$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-15}, \sqrt{29})\) |
Galois group: | $C_2^2$ |
Jacobians: | $468$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7984$ | $63744256$ | $496980055984$ | $3938094637977600$ | $31181719940893430704$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $8046$ | $704970$ | $62766238$ | $5584059450$ | $496978821006$ | $44231334895530$ | $3936588768767038$ | $350356403707485210$ | $31181719951820677806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 468 curves (of which all are hyperelliptic):
- $y^2=73 x^6+29 x^5+26 x^4+70 x^3+75 x^2+28 x+43$
- $y^2=41 x^6+87 x^5+78 x^4+32 x^3+47 x^2+84 x+40$
- $y^2=11 x^6+17 x^5+72 x^4+61 x^3+10 x^2+11 x+55$
- $y^2=72 x^6+40 x^5+71 x^4+33 x^3+19 x^2+46 x+50$
- $y^2=38 x^6+31 x^5+35 x^4+10 x^3+57 x^2+49 x+61$
- $y^2=x^6+21 x^5+58 x^4+60 x^3+81 x^2+53 x+78$
- $y^2=3 x^6+63 x^5+85 x^4+2 x^3+65 x^2+70 x+56$
- $y^2=2 x^6+28 x^5+8 x^4+22 x^3+58 x^2+51 x+82$
- $y^2=6 x^6+84 x^5+24 x^4+66 x^3+85 x^2+64 x+68$
- $y^2=54 x^6+10 x^5+10 x^4+14 x^3+42 x^2+61 x+63$
- $y^2=73 x^6+30 x^5+30 x^4+42 x^3+37 x^2+5 x+11$
- $y^2=42 x^6+71 x^5+86 x^4+66 x^3+69 x^2+50 x+56$
- $y^2=74 x^6+63 x^5+4 x^4+77 x^3+74 x^2+46 x+22$
- $y^2=37 x^6+59 x^5+4 x^4+14 x^3+35 x^2+15 x+65$
- $y^2=22 x^6+88 x^5+12 x^4+42 x^3+16 x^2+45 x+17$
- $y^2=73 x^6+57 x^5+66 x^4+77 x^3+x^2+25 x+27$
- $y^2=80 x^6+77 x^5+68 x^4+7 x^3+54 x^2+73 x+65$
- $y^2=62 x^6+53 x^5+26 x^4+21 x^3+73 x^2+41 x+17$
- $y^2=10 x^6+18 x^5+57 x^4+21 x^3+10 x^2+87 x+58$
- $y^2=30 x^6+54 x^5+82 x^4+63 x^3+30 x^2+83 x+85$
- and 448 more
- $y^2=32 x^6+14 x^5+53 x^4+66 x^3+8 x^2+2 x+73$
- $y^2=7 x^6+42 x^5+70 x^4+20 x^3+24 x^2+6 x+41$
- $y^2=34 x^6+88 x^5+82 x^4+39 x^3+49 x^2+65 x+55$
- $y^2=13 x^6+86 x^5+68 x^4+28 x^3+58 x^2+17 x+76$
- $y^2=32 x^6+73 x^5+80 x^4+73 x^3+84 x^2+73 x+82$
- $y^2=33 x^6+41 x^5+15 x^4+28 x^3+69 x^2+63 x+80$
- $y^2=24 x^6+13 x^5+81 x^4+8 x^3+33 x^2+14 x+44$
- $y^2=19 x^6+59 x^5+32 x^4+56 x^3+86 x^2+41 x+81$
- $y^2=57 x^6+88 x^5+7 x^4+79 x^3+80 x^2+34 x+65$
- $y^2=80 x^6+58 x^5+68 x^4+24 x^3+76 x^2+85 x+46$
- $y^2=62 x^6+85 x^5+26 x^4+72 x^3+50 x^2+77 x+49$
- $y^2=17 x^6+50 x^5+24 x^4+49 x^3+69 x^2+33 x+79$
- $y^2=51 x^6+61 x^5+72 x^4+58 x^3+29 x^2+10 x+59$
- $y^2=66 x^6+15 x^5+58 x^4+51 x^3+67 x^2+12 x+88$
- $y^2=10 x^6+22 x^5+23 x^4+4 x^3+51 x^2+67 x+76$
- $y^2=30 x^6+66 x^5+69 x^4+12 x^3+64 x^2+23 x+50$
- $y^2=28 x^6+76 x^5+55 x^4+44 x^3+78 x^2+48 x+88$
- $y^2=20 x^6+3 x^5+38 x^4+49 x^3+34 x^2+31 x+60$
- $y^2=77 x^6+48 x^5+39 x^4+34 x^3+55 x^2+25 x+2$
- $y^2=53 x^6+55 x^5+28 x^4+13 x^3+76 x^2+75 x+6$
- $y^2=76 x^6+73 x^5+47 x^4+78 x^3+26 x^2+64 x+77$
- $y^2=50 x^6+41 x^5+52 x^4+56 x^3+78 x^2+14 x+53$
- $y^2=62 x^6+45 x^5+50 x^4+14 x^3+63 x^2+59 x+9$
- $y^2=8 x^6+46 x^5+61 x^4+42 x^3+11 x^2+88 x+27$
- $y^2=19 x^6+23 x^5+27 x^4+16 x^3+9 x^2+25 x+28$
- $y^2=57 x^6+69 x^5+81 x^4+48 x^3+27 x^2+75 x+84$
- $y^2=86 x^6+28 x^5+8 x^4+77 x^3+81 x^2+64 x+38$
- $y^2=63 x^6+79 x^5+34 x^4+43 x^3+69 x^2+79 x+1$
- $y^2=54 x^6+12 x^5+81 x^4+36 x^3+48 x^2+22 x+45$
- $y^2=73 x^6+36 x^5+65 x^4+19 x^3+55 x^2+66 x+46$
- $y^2=63 x^6+61 x^5+6 x^4+60 x^3+41 x^2+2 x+56$
- $y^2=86 x^6+50 x^5+74 x^4+67 x^3+25 x^2+32 x+52$
- $y^2=80 x^6+61 x^5+44 x^4+23 x^3+75 x^2+7 x+67$
- $y^2=8 x^6+86 x^5+47 x^4+67 x^3+36 x^2+56 x+36$
- $y^2=24 x^6+80 x^5+52 x^4+23 x^3+19 x^2+79 x+19$
- $y^2=61 x^6+5 x^5+35 x^4+75 x^3+18 x^2+4 x+68$
- $y^2=5 x^6+15 x^5+16 x^4+47 x^3+54 x^2+12 x+26$
- $y^2=60 x^6+27 x^5+11 x^4+72 x^3+8 x^2+x$
- $y^2=2 x^6+81 x^5+33 x^4+38 x^3+24 x^2+3 x$
- $y^2=68 x^6+21 x^5+9 x^4+80 x^3+88 x^2+60 x+15$
- $y^2=26 x^6+63 x^5+27 x^4+62 x^3+86 x^2+2 x+45$
- $y^2=x^6+56 x^5+12 x^4+13 x^3+37 x^2+4 x+58$
- $y^2=3 x^6+79 x^5+36 x^4+39 x^3+22 x^2+12 x+85$
- $y^2=64 x^6+50 x^5+44 x^4+39 x^3+47 x^2+72 x+18$
- $y^2=14 x^6+61 x^5+43 x^4+28 x^3+52 x^2+38 x+54$
- $y^2=11 x^6+79 x^5+31 x^4+3 x^3+56 x^2+52 x+56$
- $y^2=33 x^6+59 x^5+4 x^4+9 x^3+79 x^2+67 x+79$
- $y^2=58 x^6+78 x^5+52 x^4+51 x^3+50 x^2+38 x+36$
- $y^2=60 x^6+16 x^5+54 x^4+8 x^3+71 x^2+71 x+67$
- $y^2=57 x^6+88 x^5+23 x^4+79 x^3+32 x^2+9 x+6$
- $y^2=28 x^6+30 x^5+5 x^4+34 x^3+52 x^2+23 x+50$
- $y^2=52 x^6+9 x^5+20 x^4+74 x^3+54 x^2+30 x+36$
- $y^2=67 x^6+27 x^5+60 x^4+44 x^3+73 x^2+x+19$
- $y^2=38 x^6+75 x^5+24 x^4+x^3+17 x^2+50 x+16$
- $y^2=25 x^6+47 x^5+72 x^4+3 x^3+51 x^2+61 x+48$
- $y^2=54 x^6+54 x^5+68 x^4+74 x^3+77 x^2+76 x+80$
- $y^2=28 x^6+58 x^5+23 x^4+75 x^3+78 x^2+4 x+56$
- $y^2=84 x^6+85 x^5+69 x^4+47 x^3+56 x^2+12 x+79$
- $y^2=77 x^6+66 x^5+82 x^4+26 x^3+76 x^2+51 x+21$
- $y^2=53 x^6+20 x^5+68 x^4+78 x^3+50 x^2+64 x+63$
- $y^2=63 x^6+70 x^5+52 x^4+5 x^3+58 x^2+87 x+87$
- $y^2=11 x^6+32 x^5+67 x^4+15 x^3+85 x^2+83 x+83$
- $y^2=26 x^6+85 x^5+53 x^4+57 x^3+37 x^2+81 x+6$
- $y^2=78 x^6+77 x^5+70 x^4+82 x^3+22 x^2+65 x+18$
- $y^2=64 x^6+47 x^5+88 x^4+76 x^3+49 x^2+84 x+70$
- $y^2=14 x^6+52 x^5+86 x^4+50 x^3+58 x^2+74 x+32$
- $y^2=72 x^6+73 x^5+76 x^4+58 x^3+62 x^2+38 x+36$
- $y^2=38 x^6+41 x^5+50 x^4+85 x^3+8 x^2+25 x+19$
- $y^2=x^6+27 x^5+69 x^4+55 x^3+83 x^2+20 x+11$
- $y^2=3 x^6+81 x^5+29 x^4+76 x^3+71 x^2+60 x+33$
- $y^2=11 x^6+x^4+81 x^3+33 x^2+32 x+56$
- $y^2=33 x^6+3 x^4+65 x^3+10 x^2+7 x+79$
- $y^2=79 x^6+88 x^5+77 x^4+35 x^3+67 x^2+35 x+61$
- $y^2=59 x^6+86 x^5+53 x^4+16 x^3+23 x^2+16 x+5$
- $y^2=23 x^6+28 x^5+21 x^4+36 x^3+52 x^2+64 x+44$
- $y^2=69 x^6+84 x^5+63 x^4+19 x^3+67 x^2+14 x+43$
- $y^2=70 x^6+12 x^5+25 x^4+31 x^3+23 x^2+59 x+17$
- $y^2=66 x^6+52 x^5+4 x^4+48 x^3+63 x^2+61 x+53$
- $y^2=21 x^6+26 x^5+x^4+73 x^3+20 x^2+43 x+3$
- $y^2=63 x^6+78 x^5+3 x^4+41 x^3+60 x^2+40 x+9$
- $y^2=54 x^6+34 x^5+40 x^4+24 x^3+31 x^2+15 x+57$
- $y^2=73 x^6+13 x^5+31 x^4+72 x^3+4 x^2+45 x+82$
- $y^2=36 x^6+9 x^5+21 x^4+12 x^3+41 x^2+59 x+88$
- $y^2=19 x^6+27 x^5+63 x^4+36 x^3+34 x^2+88 x+86$
- $y^2=29 x^6+16 x^5+21 x^4+67 x^3+19 x^2+42 x+64$
- $y^2=79 x^6+34 x^5+62 x^4+28 x^3+34 x^2+36 x+65$
- $y^2=59 x^6+13 x^5+8 x^4+84 x^3+13 x^2+19 x+17$
- $y^2=76 x^6+50 x^5+36 x^4+70 x^3+29 x^2+26 x+6$
- $y^2=50 x^6+61 x^5+19 x^4+32 x^3+87 x^2+78 x+18$
- $y^2=87 x^6+7 x^5+5 x^4+11 x^3+52 x^2+66 x+60$
- $y^2=83 x^6+21 x^5+15 x^4+33 x^3+67 x^2+20 x+2$
- $y^2=23 x^6+5 x^5+35 x^4+84 x^3+44 x^2+6 x+21$
- $y^2=69 x^6+15 x^5+16 x^4+74 x^3+43 x^2+18 x+63$
- $y^2=72 x^6+32 x^5+15 x^4+79 x^3+71 x^2+71 x+13$
- $y^2=52 x^5+47 x^4+20 x^3+3 x^2+21 x+88$
- $y^2=67 x^5+52 x^4+60 x^3+9 x^2+63 x+86$
- $y^2=35 x^6+15 x^5+41 x^4+75 x^3+25 x^2+86 x+50$
- $y^2=62 x^6+45 x^5+42 x^4+74 x^3+57 x^2+62 x+74$
- $y^2=8 x^6+46 x^5+37 x^4+44 x^3+82 x^2+8 x+44$
- $y^2=2 x^6+9 x^5+85 x^4+50 x^3+33 x^2+73 x+59$
- $y^2=28 x^6+26 x^5+24 x^4+63 x^3+88 x^2+16 x+46$
- $y^2=84 x^6+78 x^5+72 x^4+11 x^3+86 x^2+48 x+49$
- $y^2=77 x^6+58 x^5+5 x^4+74 x^3+86 x^2+10 x$
- $y^2=53 x^6+85 x^5+15 x^4+44 x^3+80 x^2+30 x$
- $y^2=66 x^6+11 x^5+73 x^4+76 x^3+24 x^2+52 x+63$
- $y^2=20 x^6+33 x^5+41 x^4+50 x^3+72 x^2+67 x+11$
- $y^2=29 x^6+75 x^5+42 x^4+43 x^3+50 x^2+8 x+40$
- $y^2=87 x^6+47 x^5+37 x^4+40 x^3+61 x^2+24 x+31$
- $y^2=26 x^6+37 x^4+75 x^3+17 x^2+78 x+53$
- $y^2=5 x^6+27 x^5+82 x^4+40 x^3+72 x^2+11 x+67$
- $y^2=15 x^6+81 x^5+68 x^4+31 x^3+38 x^2+33 x+23$
- $y^2=7 x^6+22 x^5+84 x^4+82 x^3+43 x^2+18 x+9$
- $y^2=78 x^6+53 x^5+49 x^4+32 x^3+20 x^2+54 x+58$
- $y^2=56 x^6+70 x^5+58 x^4+7 x^3+60 x^2+73 x+85$
- $y^2=15 x^6+79 x^5+77 x^4+2 x^3+11 x^2+60 x+27$
- $y^2=45 x^6+59 x^5+53 x^4+6 x^3+33 x^2+2 x+81$
- $y^2=79 x^6+x^5+38 x^4+28 x^3+59 x^2+28 x+24$
- $y^2=59 x^6+3 x^5+25 x^4+84 x^3+88 x^2+84 x+72$
- $y^2=64 x^6+9 x^5+50 x^4+3 x^3+11 x^2+72 x+19$
- $y^2=14 x^6+27 x^5+61 x^4+9 x^3+33 x^2+38 x+57$
- $y^2=20 x^6+58 x^5+23 x^4+32 x^3+43 x^2+88 x+46$
- $y^2=38 x^6+53 x^5+87 x^4+29 x^3+31 x^2+9 x+6$
- $y^2=25 x^6+70 x^5+83 x^4+87 x^3+4 x^2+27 x+18$
- $y^2=64 x^6+82 x^5+28 x^4+3 x^3+14 x^2+61 x+78$
- $y^2=14 x^6+68 x^5+84 x^4+9 x^3+42 x^2+5 x+56$
- $y^2=17 x^6+22 x^5+30 x^4+63 x^3+69 x^2+18 x+22$
- $y^2=47 x^6+70 x^5+69 x^4+27 x^3+86 x^2+3 x+74$
- $y^2=52 x^6+32 x^5+29 x^4+81 x^3+80 x^2+9 x+44$
- $y^2=4 x^6+86 x^5+58 x^4+27 x^3+80 x^2+22 x+49$
- $y^2=87 x^6+11 x^5+86 x^4+62 x^3+88 x^2+21 x+23$
- $y^2=x^6+10 x^5+3 x^4+18 x^3+68 x^2+55 x+41$
- $y^2=3 x^6+30 x^5+9 x^4+54 x^3+26 x^2+76 x+34$
- $y^2=78 x^6+64 x^5+2 x^4+33 x^3+16 x^2+55 x+86$
- $y^2=56 x^6+14 x^5+6 x^4+10 x^3+48 x^2+76 x+80$
- $y^2=84 x^6+30 x^3+27 x^2+45 x+66$
- $y^2=74 x^6+x^3+81 x^2+46 x+20$
- $y^2=x^6+58 x^5+86 x^4+71 x^3+44 x^2+26 x+59$
- $y^2=3 x^6+85 x^5+80 x^4+35 x^3+43 x^2+78 x+88$
- $y^2=12 x^6+8 x^5+82 x^4+44 x^3+2 x^2+x+48$
- $y^2=36 x^6+24 x^5+68 x^4+43 x^3+6 x^2+3 x+55$
- $y^2=41 x^6+14 x^5+22 x^4+43 x^3+84 x^2+6 x+62$
- $y^2=34 x^6+42 x^5+66 x^4+40 x^3+74 x^2+18 x+8$
- $y^2=65 x^6+48 x^5+72 x^4+62 x^3+64 x^2+7$
- $y^2=17 x^6+55 x^5+38 x^4+8 x^3+14 x^2+21$
- $y^2=44 x^6+43 x^5+57 x^4+23 x^3+53 x^2+59 x+32$
- $y^2=43 x^6+40 x^5+82 x^4+69 x^3+70 x^2+88 x+7$
- $y^2=43 x^6+16 x^5+30 x^4+47 x^3+x^2+64 x+55$
- $y^2=40 x^6+48 x^5+x^4+52 x^3+3 x^2+14 x+76$
- $y^2=63 x^6+88 x^5+53 x^4+62 x^3+32 x^2+68 x+70$
- $y^2=11 x^6+86 x^5+70 x^4+8 x^3+7 x^2+26 x+32$
- $y^2=55 x^6+76 x^5+55 x^4+35 x^3+58 x^2+85 x+82$
- $y^2=76 x^6+50 x^5+76 x^4+16 x^3+85 x^2+77 x+68$
- $y^2=71 x^6+21 x^5+35 x^4+52 x^3+39 x^2+38 x+39$
- $y^2=35 x^6+63 x^5+16 x^4+67 x^3+28 x^2+25 x+28$
- $y^2=8 x^6+51 x^5+15 x^4+62 x^3+32 x^2+7 x+54$
- $y^2=24 x^6+64 x^5+45 x^4+8 x^3+7 x^2+21 x+73$
- $y^2=78 x^6+68 x^5+66 x^4+36 x^3+25 x^2+26 x+74$
- $y^2=56 x^6+26 x^5+20 x^4+19 x^3+75 x^2+78 x+44$
- $y^2=30 x^6+56 x^5+78 x^4+9 x^3+42 x^2+10 x+80$
- $y^2=x^6+79 x^5+56 x^4+27 x^3+37 x^2+30 x+62$
- $y^2=19 x^6+46 x^5+22 x^4+21 x^3+21 x^2+57 x+70$
- $y^2=57 x^6+49 x^5+66 x^4+63 x^3+63 x^2+82 x+32$
- $y^2=22 x^6+9 x^5+32 x^4+7 x^3+24 x^2+21 x+29$
- $y^2=66 x^6+27 x^5+7 x^4+21 x^3+72 x^2+63 x+87$
- $y^2=6 x^6+37 x^5+88 x^4+56 x^3+51 x^2+x+65$
- $y^2=18 x^6+22 x^5+86 x^4+79 x^3+64 x^2+3 x+17$
- $y^2=29 x^6+39 x^5+18 x^4+59 x^3+17 x^2+70 x+40$
- $y^2=67 x^6+42 x^5+27 x^4+35 x^3+54 x^2+26 x+73$
- $y^2=23 x^6+37 x^5+81 x^4+16 x^3+73 x^2+78 x+41$
- $y^2=35 x^6+55 x^5+48 x^4+x^3+20 x^2+7 x+29$
- $y^2=16 x^6+76 x^5+55 x^4+3 x^3+60 x^2+21 x+87$
- $y^2=78 x^6+56 x^5+30 x^4+19 x^3+14 x^2+25 x+24$
- $y^2=56 x^6+79 x^5+x^4+57 x^3+42 x^2+75 x+72$
- $y^2=58 x^6+32 x^5+50 x^4+31 x^3+55 x^2+46 x+41$
- $y^2=85 x^6+7 x^5+61 x^4+4 x^3+76 x^2+49 x+34$
- $y^2=52 x^6+72 x^5+83 x^4+7 x^3+44 x^2+45 x+88$
- $y^2=16 x^6+83 x^5+17 x^4+36 x^3+83 x^2+24 x+67$
- $y^2=48 x^6+71 x^5+51 x^4+19 x^3+71 x^2+72 x+23$
- $y^2=84 x^6+14 x^5+10 x^4+42 x^3+51 x^2+9 x+32$
- $y^2=74 x^6+42 x^5+30 x^4+37 x^3+64 x^2+27 x+7$
- $y^2=19 x^6+23 x^5+39 x^4+23 x^3+12 x^2+83 x+63$
- $y^2=57 x^6+69 x^5+28 x^4+69 x^3+36 x^2+71 x+11$
- $y^2=87 x^6+46 x^5+83 x^4+77 x^3+36 x^2+33 x+9$
- $y^2=83 x^6+49 x^5+71 x^4+53 x^3+19 x^2+10 x+27$
- $y^2=66 x^6+82 x^5+20 x^4+86 x^3+54 x^2+62 x+44$
- $y^2=68 x^6+10 x^5+23 x^4+23 x^3+5 x^2+39 x+77$
- $y^2=32 x^6+42 x^5+50 x^4+72 x^3+40 x^2+5 x+26$
- $y^2=7 x^6+37 x^5+61 x^4+38 x^3+31 x^2+15 x+78$
- $y^2=27 x^6+88 x^5+68 x^4+63 x^3+23 x^2+46 x+60$
- $y^2=81 x^6+86 x^5+26 x^4+11 x^3+69 x^2+49 x+2$
- $y^2=62 x^6+78 x^5+44 x^4+24 x^3+67 x^2+72 x+36$
- $y^2=8 x^6+56 x^5+43 x^4+72 x^3+23 x^2+38 x+19$
- $y^2=43 x^6+7 x^5+45 x^4+48 x^3+3 x^2+74 x+32$
- $y^2=43 x^6+20 x^5+27 x^4+15 x^3+70 x^2+79 x+3$
- $y^2=40 x^6+60 x^5+81 x^4+45 x^3+32 x^2+59 x+9$
- $y^2=84 x^6+53 x^5+12 x^4+17 x^3+71 x^2+82 x+4$
- $y^2=44 x^6+71 x^5+12 x^4+28 x^3+x^2+5 x+20$
- $y^2=43 x^6+35 x^5+36 x^4+84 x^3+3 x^2+15 x+60$
- $y^2=35 x^6+64 x^5+12 x^4+23 x^3+81 x^2+6 x+85$
- $y^2=16 x^6+14 x^5+36 x^4+69 x^3+65 x^2+18 x+77$
- $y^2=46 x^6+57 x^5+15 x^4+66 x^3+34 x^2+15 x+78$
- $y^2=49 x^6+82 x^5+45 x^4+20 x^3+13 x^2+45 x+56$
- $y^2=31 x^6+11 x^5+58 x^4+3 x^3+25 x^2+68 x+72$
- $y^2=46 x^6+74 x^5+2 x^4+78 x^3+40 x^2+12 x+61$
- $y^2=41 x^6+29 x^5+33 x^4+71 x^3+45 x^2+12 x+5$
- $y^2=36 x^6+30 x^5+68 x^4+52 x^3+32 x^2+60 x+12$
- $y^2=19 x^6+x^5+26 x^4+67 x^3+7 x^2+2 x+36$
- $y^2=11 x^6+19 x^5+16 x^4+64 x^3+4 x^2+85 x+62$
- $y^2=33 x^6+57 x^5+48 x^4+14 x^3+12 x^2+77 x+8$
- $y^2=53 x^6+83 x^5+13 x^4+53 x^3+49 x^2+63 x+50$
- $y^2=70 x^6+71 x^5+39 x^4+70 x^3+58 x^2+11 x+61$
- $y^2=11 x^6+33 x^5+46 x^4+42 x^3+57 x^2+23 x+2$
- $y^2=33 x^6+10 x^5+49 x^4+37 x^3+82 x^2+69 x+6$
- $y^2=27 x^6+72 x^5+17 x^4+11 x^3+14 x^2+67 x+22$
- $y^2=68 x^6+16 x^5+29 x^4+25 x^3+75 x^2+40 x$
- $y^2=26 x^6+48 x^5+87 x^4+75 x^3+47 x^2+31 x$
- $y^2=22 x^6+53 x^5+3 x^4+70 x^3+6 x^2+2 x+46$
- $y^2=66 x^6+70 x^5+9 x^4+32 x^3+18 x^2+6 x+49$
- $y^2=38 x^6+50 x^5+66 x^4+14 x^3+39 x^2+6 x+68$
- $y^2=25 x^6+61 x^5+20 x^4+42 x^3+28 x^2+18 x+26$
- $y^2=81 x^6+75 x^5+8 x^4+57 x^3+60 x^2+42 x+56$
- $y^2=65 x^6+47 x^5+24 x^4+82 x^3+2 x^2+37 x+79$
- $y^2=21 x^6+45 x^5+53 x^4+6 x^3+5 x^2+34$
- $y^2=63 x^6+46 x^5+70 x^4+18 x^3+15 x^2+13$
- $y^2=34 x^6+22 x^5+55 x^4+20 x^3+24 x^2+16 x+48$
- $y^2=13 x^6+66 x^5+76 x^4+60 x^3+72 x^2+48 x+55$
- $y^2=12 x^6+42 x^5+72 x^4+12 x^3+6 x^2+20 x+47$
- $y^2=87 x^6+76 x^5+74 x^4+32 x^3+25 x^2+56 x+77$
- $y^2=83 x^6+50 x^5+44 x^4+7 x^3+75 x^2+79 x+53$
- $y^2=5 x^6+75 x^5+61 x^4+51 x^3+49 x^2+88 x+27$
- $y^2=59 x^6+46 x^5+12 x^4+25 x^3+57 x^2+68 x+38$
- $y^2=88 x^6+49 x^5+36 x^4+75 x^3+82 x^2+26 x+25$
- $y^2=49 x^5+57 x^4+59 x^3+53 x^2+87 x+22$
- $y^2=58 x^5+82 x^4+88 x^3+70 x^2+83 x+66$
- $y^2=49 x^6+37 x^5+27 x^4+28 x^3+36 x^2+39 x+75$
- $y^2=58 x^6+22 x^5+81 x^4+84 x^3+19 x^2+28 x+47$
- $y^2=x^6+21 x^5+61 x^4+62 x^3+48 x^2+x+9$
- $y^2=3 x^6+63 x^5+5 x^4+8 x^3+55 x^2+3 x+27$
- $y^2=52 x^6+17 x^5+78 x^4+13 x^3+47 x^2+66 x+20$
- $y^2=14 x^6+34 x^5+84 x^4+72 x^3+12 x^2+57 x+40$
- $y^2=61 x^6+67 x^5+33 x^4+67 x^3+36 x^2+59 x+1$
- $y^2=5 x^6+23 x^5+10 x^4+23 x^3+19 x^2+88 x+3$
- $y^2=84 x^6+56 x^5+51 x^4+65 x^3+37 x^2+86 x+48$
- $y^2=74 x^6+79 x^5+64 x^4+17 x^3+22 x^2+80 x+55$
- $y^2=48 x^6+87 x^5+47 x^4+6 x^3+9 x^2+31 x+15$
- $y^2=55 x^6+83 x^5+52 x^4+18 x^3+27 x^2+4 x+45$
- $y^2=41 x^6+17 x^5+11 x^4+4 x^3+75 x^2+3 x+59$
- $y^2=34 x^6+51 x^5+33 x^4+12 x^3+47 x^2+9 x+88$
- $y^2=54 x^6+49 x^5+40 x^4+62 x^3+17 x^2+32 x+12$
- $y^2=73 x^6+58 x^5+31 x^4+8 x^3+51 x^2+7 x+36$
- $y^2=28 x^6+48 x^5+57 x^4+82 x^3+81 x^2+2 x+16$
- $y^2=84 x^6+55 x^5+82 x^4+68 x^3+65 x^2+6 x+48$
- $y^2=11 x^6+56 x^5+22 x^4+3 x^3+84 x^2+57 x+15$
- $y^2=33 x^6+79 x^5+66 x^4+9 x^3+74 x^2+82 x+45$
- $y^2=22 x^6+33 x^5+42 x^4+54 x^3+83 x^2+x+38$
- $y^2=66 x^6+10 x^5+37 x^4+73 x^3+71 x^2+3 x+25$
- $y^2=50 x^6+25 x^5+34 x^4+57 x^3+9 x^2+9 x+88$
- $y^2=61 x^6+75 x^5+13 x^4+82 x^3+27 x^2+27 x+86$
- $y^2=76 x^6+50 x^5+12 x^4+13 x^3+55 x^2+64 x+29$
- $y^2=50 x^6+61 x^5+36 x^4+39 x^3+76 x^2+14 x+87$
- $y^2=2 x^6+74 x^5+2 x^3+80 x^2+10 x+2$
- $y^2=37 x^6+17 x^5+5 x^4+2 x^3+81 x^2+68 x+19$
- $y^2=47 x^6+28 x^5+24 x^4+33 x^3+25 x^2+13 x+51$
- $y^2=52 x^6+84 x^5+72 x^4+10 x^3+75 x^2+39 x+64$
- $y^2=36 x^6+80 x^5+65 x^4+12 x^3+80 x^2+54 x+86$
- $y^2=19 x^6+62 x^5+17 x^4+36 x^3+62 x^2+73 x+80$
- $y^2=79 x^6+26 x^5+78 x^4+7 x^3+55 x^2+67 x+70$
- $y^2=59 x^6+78 x^5+56 x^4+21 x^3+76 x^2+23 x+32$
- $y^2=40 x^6+20 x^5+44 x^4+56 x^3+18 x^2+36 x+72$
- $y^2=31 x^6+60 x^5+43 x^4+79 x^3+54 x^2+19 x+38$
- $y^2=14 x^6+44 x^5+23 x^4+78 x^3+79 x^2+80 x+1$
- $y^2=42 x^6+43 x^5+69 x^4+56 x^3+59 x^2+62 x+3$
- $y^2=60 x^6+45 x^5+6 x^4+10 x^3+67 x^2+77 x+59$
- $y^2=2 x^6+46 x^5+18 x^4+30 x^3+23 x^2+53 x+88$
- $y^2=73 x^6+68 x^5+52 x^4+3 x^3+45 x^2+63 x+78$
- $y^2=41 x^6+26 x^5+67 x^4+9 x^3+46 x^2+11 x+56$
- $y^2=17 x^6+37 x^5+40 x^4+74 x^3+48 x^2+7 x+13$
- $y^2=8 x^6+76 x^5+31 x^4+83 x^3+63 x^2+12 x+75$
- $y^2=24 x^6+50 x^5+4 x^4+71 x^3+11 x^2+36 x+47$
- $y^2=80 x^6+52 x^5+80 x^4+17 x^3+58 x^2+2 x+16$
- $y^2=62 x^6+67 x^5+62 x^4+51 x^3+85 x^2+6 x+48$
- $y^2=71 x^6+31 x^5+70 x^4+71 x^3+64 x^2+65 x+88$
- $y^2=35 x^6+4 x^5+32 x^4+35 x^3+14 x^2+17 x+86$
- $y^2=80 x^6+54 x^5+53 x^4+6 x^3+44 x^2+29 x+7$
- $y^2=62 x^6+73 x^5+70 x^4+18 x^3+43 x^2+87 x+21$
- $y^2=73 x^6+12 x^5+46 x^4+87 x^3+24 x^2+16 x+3$
- $y^2=41 x^6+36 x^5+49 x^4+83 x^3+72 x^2+48 x+9$
- $y^2=8 x^6+78 x^5+78 x^4+23 x^3+4 x^2+3 x+70$
- $y^2=24 x^6+56 x^5+56 x^4+69 x^3+12 x^2+9 x+32$
- $y^2=62 x^6+26 x^5+58 x^4+32 x^3+67 x^2+56 x+83$
- $y^2=6 x^6+4 x^5+79 x^4+42 x^3+43 x^2+61 x+14$
- $y^2=18 x^6+12 x^5+59 x^4+37 x^3+40 x^2+5 x+42$
- $y^2=31 x^6+20 x^5+49 x^4+25 x^3+29 x^2+45 x+49$
- $y^2=27 x^5+38 x^4+83 x^3+22 x^2+21 x+29$
- $y^2=22 x^6+28 x^5+64 x^4+65 x^3+15 x^2+42 x+43$
- $y^2=66 x^6+84 x^5+14 x^4+17 x^3+45 x^2+37 x+40$
- $y^2=20 x^6+12 x^5+37 x^4+53 x^3+9 x^2+81 x+55$
- $y^2=44 x^6+20 x^5+66 x^4+6 x^3+10 x^2+17 x+46$
- $y^2=43 x^6+60 x^5+20 x^4+18 x^3+30 x^2+51 x+49$
- $y^2=42 x^6+60 x^5+34 x^4+86 x^3+64 x^2+59 x+85$
- $y^2=37 x^6+2 x^5+13 x^4+80 x^3+14 x^2+88 x+77$
- $y^2=77 x^6+32 x^5+63 x^3+87 x^2+7 x+27$
- $y^2=53 x^6+7 x^5+11 x^3+83 x^2+21 x+81$
- $y^2=64 x^6+33 x^5+48 x^4+37 x^3+x^2+59 x+77$
- $y^2=26 x^6+36 x^5+51 x^4+37 x^3+50 x^2+86 x+81$
- $y^2=x^6+42 x^5+88 x^4+77 x^3+49 x^2+72 x+58$
- $y^2=3 x^6+37 x^5+86 x^4+53 x^3+58 x^2+38 x+85$
- $y^2=57 x^6+65 x^5+43 x^4+43 x^3+57 x^2+76 x+34$
- $y^2=30 x^6+33 x^5+25 x^4+46 x^3+24 x^2+70 x+53$
- $y^2=68 x^6+40 x^5+23 x^4+63 x^3+81 x^2+2 x$
- $y^2=26 x^6+31 x^5+69 x^4+11 x^3+65 x^2+6 x$
- $y^2=47 x^6+59 x^5+66 x^4+10 x^3+35 x^2+46 x+21$
- $y^2=64 x^6+25 x^4+23 x^3+47 x^2+77 x+53$
- $y^2=14 x^6+75 x^4+69 x^3+52 x^2+53 x+70$
- $y^2=72 x^6+70 x^5+64 x^4+76 x^3+52 x^2+58 x+44$
- $y^2=55 x^6+80 x^5+63 x^4+25 x^3+64 x^2+85 x+54$
- $y^2=74 x^6+42 x^5+27 x^4+30 x^3+25 x^2+22 x+78$
- $y^2=44 x^6+37 x^5+81 x^4+x^3+75 x^2+66 x+56$
- $y^2=35 x^6+44 x^5+22 x^4+79 x^3+5 x^2+41 x+23$
- $y^2=52 x^6+81 x^5+71 x^4+51 x^3+70 x^2+67 x+85$
- $y^2=67 x^6+65 x^5+35 x^4+64 x^3+32 x^2+23 x+77$
- $y^2=69 x^6+88 x^5+37 x^4+21 x^3+77 x+75$
- $y^2=29 x^6+86 x^5+22 x^4+63 x^3+53 x+47$
- $y^2=4 x^6+69 x^5+59 x^4+14 x^3+23 x^2+82 x+54$
- $y^2=12 x^6+29 x^5+88 x^4+42 x^3+69 x^2+68 x+73$
- $y^2=27 x^6+34 x^5+23 x^4+33 x^3+64 x^2+43 x+71$
- $y^2=81 x^6+13 x^5+69 x^4+10 x^3+14 x^2+40 x+35$
- $y^2=81 x^5+43 x^4+17 x^3+84 x^2+84 x+52$
- $y^2=65 x^5+40 x^4+51 x^3+74 x^2+74 x+67$
- $y^2=82 x^6+25 x^5+62 x^4+10 x^3+58 x^2+65 x+17$
- $y^2=68 x^6+75 x^5+8 x^4+30 x^3+85 x^2+17 x+51$
- $y^2=86 x^6+31 x^5+22 x^4+34 x^3+15 x^2+70 x+31$
- $y^2=46 x^6+62 x^5+29 x^4+7 x^3+38 x^2+85 x+88$
- $y^2=49 x^6+8 x^5+87 x^4+21 x^3+25 x^2+77 x+86$
- $y^2=67 x^6+61 x^5+51 x^4+37 x^3+55 x^2+82 x+11$
- $y^2=72 x^6+51 x^5+29 x^4+55 x^3+30 x^2+74 x+12$
- $y^2=38 x^6+64 x^5+87 x^4+76 x^3+x^2+44 x+36$
- $y^2=11 x^6+88 x^5+50 x^4+26 x^3+88 x^2+22 x+12$
- $y^2=33 x^6+86 x^5+61 x^4+78 x^3+86 x^2+66 x+36$
- $y^2=25 x^6+33 x^5+72 x^4+59 x^3+7 x^2+29 x+23$
- $y^2=17 x^6+9 x^5+x^4+85 x^3+33 x^2+37 x+1$
- $y^2=51 x^6+27 x^5+3 x^4+77 x^3+10 x^2+22 x+3$
- $y^2=41 x^6+6 x^5+19 x^4+84 x^3+61 x^2+82 x+21$
- $y^2=34 x^6+18 x^5+57 x^4+74 x^3+5 x^2+68 x+63$
- $y^2=77 x^6+60 x^5+8 x^4+6 x^3+9 x^2+26 x$
- $y^2=53 x^6+2 x^5+24 x^4+18 x^3+27 x^2+78 x$
- $y^2=60 x^6+38 x^5+14 x^4+88 x^3+34 x+70$
- $y^2=2 x^6+25 x^5+42 x^4+86 x^3+13 x+32$
- $y^2=74 x^6+82 x^5+33 x^4+75 x^3+60 x^2+27 x+17$
- $y^2=44 x^6+68 x^5+10 x^4+47 x^3+2 x^2+81 x+51$
- $y^2=59 x^6+85 x^5+54 x^4+67 x^3+42 x^2+40 x+13$
- $y^2=88 x^6+77 x^5+73 x^4+23 x^3+37 x^2+31 x+39$
- $y^2=25 x^6+73 x^5+5 x^4+50 x^3+4 x^2+5 x+78$
- $y^2=75 x^6+41 x^5+15 x^4+61 x^3+12 x^2+15 x+56$
- $y^2=16 x^6+6 x^5+51 x^4+27 x^3+48 x^2+63 x+60$
- $y^2=48 x^6+18 x^5+64 x^4+81 x^3+55 x^2+11 x+2$
- $y^2=65 x^6+31 x^5+5 x^4+9 x^3+26 x^2+9 x+8$
- $y^2=71 x^6+14 x^5+27 x^4+32 x^3+30 x^2+25 x+65$
- $y^2=86 x^6+86 x^5+76 x^4+5 x^3+88 x^2+71 x+12$
- $y^2=80 x^6+80 x^5+50 x^4+15 x^3+86 x^2+35 x+36$
- $y^2=88 x^6+69 x^5+2 x^4+54 x^3+59 x^2+39 x+82$
- $y^2=36 x^6+19 x^5+58 x^4+2 x^3+53 x^2+7 x+33$
- $y^2=19 x^6+57 x^5+85 x^4+6 x^3+70 x^2+21 x+10$
- $y^2=10 x^6+80 x^5+57 x^4+24 x^3+62 x^2+50 x+31$
- $y^2=57 x^6+24 x^5+x^4+27 x^3+68 x^2+6 x+82$
- $y^2=28 x^6+43 x^5+3 x^4+85 x^3+71 x^2+22 x+51$
- $y^2=84 x^6+40 x^5+9 x^4+77 x^3+35 x^2+66 x+64$
- $y^2=65 x^6+10 x^5+87 x^4+20 x^3+11 x^2+6 x+22$
- $y^2=17 x^6+30 x^5+83 x^4+60 x^3+33 x^2+18 x+66$
- $y^2=24 x^6+70 x^5+7 x^4+70 x^3+37 x^2+81 x+22$
- $y^2=72 x^6+32 x^5+21 x^4+32 x^3+22 x^2+65 x+66$
- $y^2=36 x^6+20 x^5+64 x^4+63 x^3+45 x^2+42 x+40$
- $y^2=19 x^6+60 x^5+14 x^4+11 x^3+46 x^2+37 x+31$
- $y^2=2 x^6+71 x^5+77 x^4+13 x^3+87 x^2+36 x+27$
- $y^2=6 x^6+35 x^5+53 x^4+39 x^3+83 x^2+19 x+81$
- $y^2=38 x^6+50 x^5+52 x^4+75 x^3+32 x^2+84 x+78$
- $y^2=25 x^6+61 x^5+67 x^4+47 x^3+7 x^2+74 x+56$
- $y^2=62 x^6+36 x^5+37 x^4+17 x^3+34 x^2+70 x+59$
- $y^2=22 x^6+44 x^5+27 x^4+77 x^3+64 x^2+79 x+2$
- $y^2=66 x^6+43 x^5+81 x^4+53 x^3+14 x^2+59 x+6$
- $y^2=39 x^6+67 x^4+65 x^3+30 x^2+72 x+31$
- $y^2=28 x^6+23 x^4+17 x^3+x^2+38 x+4$
- $y^2=33 x^6+74 x^5+10 x^4+56 x^3+41 x^2+67 x+79$
- $y^2=10 x^6+44 x^5+30 x^4+79 x^3+34 x^2+23 x+59$
- $y^2=14 x^6+11 x^5+56 x^4+82 x^3+36 x^2+5 x+85$
- $y^2=82 x^6+87 x^5+62 x^4+71 x^3+54 x^2+45 x+44$
- $y^2=68 x^6+83 x^5+8 x^4+35 x^3+73 x^2+46 x+43$
- $y^2=48 x^6+31 x^5+15 x^4+54 x^3+68 x^2+27 x+45$
- $y^2=4 x^6+24 x^5+57 x^4+67 x^3+80 x^2+24 x+47$
- $y^2=12 x^6+72 x^5+82 x^4+23 x^3+62 x^2+72 x+52$
- $y^2=66 x^6+78 x^5+17 x^4+19 x^3+23 x^2+41 x+34$
- $y^2=20 x^6+56 x^5+51 x^4+57 x^3+69 x^2+34 x+13$
- $y^2=37 x^6+73 x^5+63 x^4+75 x^3+21 x^2+7 x+82$
- $y^2=22 x^6+41 x^5+11 x^4+47 x^3+63 x^2+21 x+68$
- $y^2=17 x^6+69 x^5+32 x^4+13 x^3+23 x^2+42 x+18$
- $y^2=51 x^6+29 x^5+7 x^4+39 x^3+69 x^2+37 x+54$
- $y^2=19 x^6+29 x^5+50 x^4+75 x^3+76 x^2+23 x+4$
- $y^2=18 x^6+63 x^5+5 x^4+86 x^3+55 x^2+23 x+34$
- $y^2=54 x^6+11 x^5+15 x^4+80 x^3+76 x^2+69 x+13$
- $y^2=52 x^6+28 x^5+57 x^4+79 x^3+70 x^2+14 x+82$
- $y^2=67 x^6+84 x^5+82 x^4+59 x^3+32 x^2+42 x+68$
- $y^2=43 x^6+36 x^5+10 x^4+54 x^3+78 x^2+62 x+78$
- $y^2=40 x^6+19 x^5+30 x^4+73 x^3+56 x^2+8 x+56$
- $y^2=49 x^6+53 x^5+41 x^4+14 x^3+88 x^2+37 x+38$
- $y^2=58 x^6+70 x^5+34 x^4+42 x^3+86 x^2+22 x+25$
- $y^2=35 x^6+55 x^5+65 x^4+56 x^3+30 x^2+85$
- $y^2=16 x^6+76 x^5+17 x^4+79 x^3+x^2+77$
- $y^2=62 x^6+74 x^5+81 x^4+33 x^3+76 x^2+7 x+76$
- $y^2=8 x^6+44 x^5+65 x^4+10 x^3+50 x^2+21 x+50$
- $y^2=17 x^6+84 x^5+76 x^4+47 x^3+56 x^2+84 x+6$
- $y^2=51 x^6+74 x^5+50 x^4+52 x^3+79 x^2+74 x+18$
- $y^2=11 x^6+13 x^5+x^4+65 x^3+83 x^2+23 x+27$
- $y^2=72 x^6+36 x^5+42 x^4+49 x^3+29 x^2+70 x+39$
- $y^2=38 x^6+19 x^5+37 x^4+58 x^3+87 x^2+32 x+28$
- $y^2=57 x^6+21 x^5+43 x^4+21 x^3+25 x^2+52 x+23$
- $y^2=41 x^6+12 x^5+22 x^4+36 x^3+37 x^2+9 x+14$
- $y^2=34 x^6+36 x^5+66 x^4+19 x^3+22 x^2+27 x+42$
- $y^2=23 x^6+24 x^5+75 x^4+22 x^3+9 x^2+81 x+19$
- $y^2=69 x^6+72 x^5+47 x^4+66 x^3+27 x^2+65 x+57$
- $y^2=52 x^6+62 x^5+18 x^4+31 x^3+21 x^2+56 x+76$
- $y^2=67 x^6+8 x^5+54 x^4+4 x^3+63 x^2+79 x+50$
- $y^2=8 x^6+62 x^5+20 x^4+61 x^3+61 x^2+61 x+82$
- $y^2=76 x^6+23 x^5+6 x^4+68 x^2+88 x+63$
- $y^2=50 x^6+69 x^5+18 x^4+26 x^2+86 x+11$
- $y^2=x^6+16 x^5+86 x^4+83 x^3+57 x^2+47 x+86$
- $y^2=3 x^6+48 x^5+80 x^4+71 x^3+82 x^2+52 x+80$
- $y^2=58 x^6+65 x^5+28 x^4+78 x^3+79 x^2+16 x+39$
- $y^2=85 x^6+17 x^5+84 x^4+56 x^3+59 x^2+48 x+28$
- $y^2=26 x^6+15 x^5+39 x^4+47 x^3+81 x^2+x+79$
- $y^2=78 x^6+45 x^5+28 x^4+52 x^3+65 x^2+3 x+59$
- $y^2=71 x^6+84 x^5+53 x^4+26 x^3+68 x^2+85 x+42$
- $y^2=56 x^6+84 x^5+84 x^4+7 x^3+58 x^2+57 x+22$
- $y^2=3 x^6+68 x^5+27 x^4+69 x^3+33 x^2+3 x+70$
- $y^2=23 x^6+88 x^5+3 x^4+34 x^3+25 x^2+85 x+9$
- $y^2=69 x^6+86 x^5+9 x^4+13 x^3+75 x^2+77 x+27$
- $y^2=82 x^6+35 x^5+57 x^4+43 x^3+63 x^2+38 x+81$
- $y^2=68 x^6+16 x^5+82 x^4+40 x^3+11 x^2+25 x+65$
- $y^2=55 x^6+72 x^5+41 x^4+82 x^3+8 x^2+2 x+29$
- $y^2=76 x^6+44 x^5+38 x^4+7 x^3+48 x^2+14 x+15$
- $y^2=50 x^6+43 x^5+25 x^4+21 x^3+55 x^2+42 x+45$
- $y^2=38 x^6+23 x^5+75 x^4+86 x^3+64 x^2+79 x+62$
- $y^2=25 x^6+69 x^5+47 x^4+80 x^3+14 x^2+59 x+8$
- $y^2=14 x^6+74 x^5+80 x^4+84 x^3+43 x^2+9 x+80$
- $y^2=58 x^6+4 x^5+61 x^4+42 x^3+4 x^2+73 x+39$
- $y^2=85 x^6+12 x^5+5 x^4+37 x^3+12 x^2+41 x+28$
- $y^2=43 x^6+61 x^5+82 x^4+15 x^3+59 x^2+35 x+43$
- $y^2=39 x^6+13 x^5+52 x^4+88 x^3+42 x^2+22 x$
- $y^2=28 x^6+39 x^5+67 x^4+86 x^3+37 x^2+66 x$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-15}, \sqrt{29})\). |
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.ck 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-435}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.a_ack | $4$ | (not in LMFDB) |